
1 Limits, Part 0 (Prereqs)

Before we formally define limits, it helps to have a handwavy intuition for limits
mechanics, and to understand inequalities. In this chapter we learn these prereqs
as quickly as possible.

1.1 Handwavy limits definition

Here I only present a hand-wavy definition of limits and use it to explain the
mechanics of computing limits of functions in practice. A proper definition and
proofs of the theorems that make the mechanics work come in a later chapter.

A hand-wavy definition: a limit of f(x) at a is the value f(x) approaches
close to (but not necessarily at) a.

A slightly less hand-wavy definition: let f : R → R, let a ∈ R be some
number on the x-axis, and let l ∈ R be some number on the y-axis. Then as x
gets closer to a, f(x) gets closer to l.

The notation for this whole thing is

lim
x→a

f(x) = l

So for example limx→5 x
2 = 25 because the closer x gets to 5, the closer x2 gets

to 25 (we’ll prove all this properly soon). Now suppose you have some fancy
pants function like this one:

lim
x→0

1−
√
x

1− x
(1)

If you plot it, it’s easy to see that as x approaches 0, the whole shebang ap-
proaches 1. But how do you algebraically evaluate the limit of this thing? Can
you just plug 0 into the equation? It seems to work, but once we formally de-
fine limits, we’ll have to prove somehow that plugging a = 0 into x gives us the
correct result.

1.2 Limits evaluation mechanics

It turns out that it does in fact work because of a few theorems that make
practical evaluation of many limits easy. Here I’ll state these theorems as facts.
Once I introduce the formal definition of limits in a later chapter I’ll properly
prove them.

1. Constants. limx→a c = c, where c ∈ R. In other words if the function is
a constant, e.g. f(x) = 5, then limx→a f(x) = 5 for any a.

2. Identity. limx→a x = a. In other words if the function is an identity
function f(x) = x, then limx→6 f(x) = 6. Meaning we simply plug a into
x.
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3. Addition1. limx→a(f + g)(x) = limx→a f(x)+ limx→a g(x). For example
limx→a(x+ 2) = limx→a x+ limx→a 2 = a+ 2.

4. Multiplication. limx→a(f · g)(x) = limx→a f(x) · limx→a g(x). For ex-
ample limx→a 2x = limx→a 2 · limx→a x = 2a.

5. Reciprocal. limx→a

(
1
f

)
(x) = 1

limx→a f(x) when the denominator isn’t

zero. For example limx→a
1
x = 1

limx→a x = 1
a for a ̸= 0.

To come back to 1, these theorems tells us that

lim
x→0

1−
√
x

1− x
=

limx→0 1− (limx→0 x)
1
2

limx→0 1− limx→0 x
=

1− 0
1
2

1− 0
= 1

Holes

What happens if we try to take a limit as x → 1 rather than x → 0?

lim
x→1

1−
√
x

1− x

We can’t use the same trick and plug in 1 because we get a nonsensical result
0/0 as the function isn’t defined at 0. If we plot it, we clearly see the limit
approaches 1/2 at 0, but how do we prove this algebraically? The answer is to
do some trickery to find a way to cancel out the inconvenient term (in this case
1−

√
x)

lim
x→1

1−
√
x

1− x
= lim

x→1

1−
√
x

(1−
√
x)(1 +

√
x)

= lim
x→1

1

1 +
√
x
=

1

2

Why is it ok here to divide by 1−
√
x? Good question! Recall that the limit is

defined close to a (or around a, or as x approaches a), but not at a. In other
words f(a) need not even be defined (as is the case here). This means that as
we consider 1 −

√
x at different values of x as it approaches a, the limit never

requires us to evaluate the function at x = a. So we never have to consider
1−

√
x as x = 1, 1 −

√
x never takes on the value of 0, and it is safe to divide

it out.

1.3 Absolute value inequalities

Consider an inequality 0 < |x − a| < δ. This will come up a lot soon. What
does this inequality mean? The intuitive reading is that the difference between
x and a is between 0 and δ. But it’s a little subtle, so let’s look at it carefully.
There are actually two inequalities here: 0 < |x− a| and |x− a| < δ. We should
consider each separately.

1Spivak’s book uses a slightly more verbose definition that assumes the limits of f and g
exist near a, see p. 103
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The left side, 0 < |x− a| is equivalent to |x− a| > 0. But |x− a| is an absolute
value, it’s always true that |x − a| ≥ 0. So this part of the inequality says
x− a ̸= 0, or x ̸= a. I don’t know why mathematicians say 0 < |x− a| instead
of x ̸= a, probably because confusing you brings them pleasure.

The right side is |x − a| < δ. Intuitively this says that the difference between
x and a should be less than δ. Put differently, x should be within δ of a.
Algebraically we can write it as two cases:

1. x− a < δ

2. −(x− a) < δ

A little basic manipulation, and we can rewrite this as a− δ < x < a+ δ.

1.4 Bounding with inequalities

We will often need to make an inequality of the following form work out:

|n||m| < ϵ

Here ϵ is given to us, we have complete control over the upper bound of |n|,
and |m| can take on values outside our direct control. Obviously we can’t make
the inequality work without knowing something about |m|, so we’ll try to find
a bound for it in terms of other fixed values, or values we control.

For example, suppose we’ve discovered there is a fixed value a, and that |m| <
3|a|+ 4. Given that we control |n|, how do we bound it in terms of ϵ and |a| in
such a way that the inequality |n||m| < ϵ holds?

Since we control |n| and (3|a| + 4) is fixed, we can find |n| small enough so
that |n|(3|a| + 4) < ϵ holds. Then certainly any inequality whose left side is
smaller, e.g. |n|(3|a| + 3) < ϵ, will also hold. And since |m| is always smaller
than 3|a|+ 4, it follows |n||m| < ϵ will hold as well.

All we have left to do is find a bound for |n| such that |n|(3|a| + 4) < ϵ holds,
which is of course easy:

|n| < ϵ

3|a|+ 4

Having bound |n| in this way, we can verify that |n|(3|a| + 4) < ϵ holds by
multiplying both sides of the above inequality by 3|a|+ 4.
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