
10 Derivatives, Part IIb (Leibniz notation)

The notation f ′ that we’ve used so far is called the Lagrange notation.13 How-
ever, there is another notation for the derivative in common use. You may have
already seen something like dy

dx . This is called the Leibniz notation.

The Leibniz notation has many of what Spivak calls “vagaries”. It has multiple
interpretations– formal and informal. The informal interpretation doesn’t map
to modern mathematics, but can sometimes be useful (while at other times mis-
leading). The full, unambigous Leibniz notation, at least as Spivak defines it, is
verbose, so in practice people end up taking liberties with it. As a consequence,
its meaning must often be discerned from the context.

This flexibility makes the notation very useful in science and engineering, but
also makes it difficult to learn. Spivak chose to standardize on the Lagrange
notation to maximize clarity, and banished Leibniz notation to problem sections.
But since the Leibniz notation is so common, I take a different approach and
explore it here in a dedicated chapter.

10.1 Historical motivation

We start with the historical interpretation, where the notation began. Leibniz
didn’t know about limits. He thought the derivative is the value of the quotient

f(x+ h)− f(x)

h

when h is “infinitesimally small”. He denoted this infinitesimally small quantity
of h by dx, and the corresponding difference f(x + dx) − f(x) by df(x). Thus
for a given function f the Leibniz notation for its derivative f ′ is:

df(x)

dx
= f ′

Intuitively, we can think of d in a historical context as “delta” or “change”.
Then we can interpret this notation as Leibniz did– a quotient of a tiny change
in f(x) and a tiny change in x. But this explanation comes with two important
disclaimers.

First, d is not a value. If it were a value, you could cancel out d’s in the numer-
ator and the denomenator. But you can’t. Instead think of d as an operator.
When applied to f(x) or x, it produces an infinitesimally small quantity. Alter-
natively you can think of df(x) and dx as one symbol that happens to look like
multiplication, but isn’t.14

13Wikipedia claims the notation was invented by Euler and Lagrange only popularized it.
14I read somewhere that in his notebooks Leibniz experimented with extending d with a

squiggle on top that went over x to indicate that d is not a value, but I haven’t been able to
verify if that’s true.
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Second, note that df(x)
dx denotes a function equivalent to f ′, not a value equivalent

to f ′(x). To denote the image of the derivative function at a we use the following
notation:

df(x)

dx

∣∣∣∣
x=a

= lim
h→0

f(a+ h)− f(a)

h
= f ′(a)

10.2 Modern interpretation

To summarize, the full and unambiguous Leibniz notation in modern in-
terpretation is:

df(x)

dx
= f ′ and

df(x)

dx

∣∣∣∣
x=a

= f ′(a)

Real numbers do not have a notion of infinitesimally small quantities. Thus in a

modern interpretation we treat df(x)
dx as a symbol denoting f ′, not as a quotient

of numbers. Nothing here is being divided, nothing can be canceled out. In a

modern interpretation df(x)
dx is just one thing that happens to look like a quotient

but isn’t, anymore than f ′ is a quotient.

10.3 Second derivative

A question arises for how to express the second (or nth) derivative in the Leibniz

notation. Let g(x) = df(x)
dx (i.e. let g be the first derivative of f). Then it follows

that the second derivative in Leibniz notation is dg(x)
dx = g′ = f ′′. Substituting

the definition of g we get:

d
(

df(x)
dx

)
dx

= f ′′

Of course this is too verbose and no one wants to write it this way. This is
where the vagaries begin. For convenience people use the usual algebraic rules
to get a simpler notation, eventhough formally everything is one symbol and
you can’t actually do algebra on it:

d
(

df(x)
dx

)
dx

=
d2f(x)

dx2

Two questions arise here.

First, why dx2? Shouldn’t it be (dx)2? One way to answer this question is
to remember that dx is one symbol, not a multiplication (because d is not a
value). And so we’re just squaring that one symbol dx, which doesn’t require
parentheses.

Another probably more honest way to answer this question is to recall that this
isn’t real algebra– we just use a simularcum of algebra out of convenience. But
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convenience is a morally flexible thing, and people decided to drop parentheses
because they’re a pain to write. So (dx)2 became dx2.

Second, we said before that df(x) can be thought of as one symbol. Then what
is this d2 business? The answer here is the same– we aren’t doing real algebra,
but a simularcum of algebra out of convenience. We aren’t really squaring
anything; we’re overloading exponentiation to mean “second derivative”. The
symbol d2f(x) is again one symbol.

10.4 Liberties and ambiguities

There are a few more liberties people take with the Leibniz notation. Let
f(x) = x2. If we want to denote the derivative of f we can do it in two ways:

df(x)

dx
or

dx2

dx

Here dx2

dx is new, but the meaning should be clear. We’re just replacing f(x)
in df(x) with the definition of f(x). This is a little confusing because in the
particular case of f(x) = x2, it’s visually similar to the notation for second
derivative. There are no ambiguities here so far– it’s just a visual artifact of the
notation we have to learn to ignore. But now the liberties come.

Suppose we wanted to state what the derivative of f is. In Lagrange notation
we say f ′(a) = 2a. In Leibniz notation the proper way to say it would be as
follows:

df(x)

dx

∣∣∣∣
x=a

= 2a

But this is obviously a pain, so people end up taking two liberties. First,
everyone drops the vertical line that denotes the application at a. So in practice
the form above becomes:

df(x)

dx
= 2x

This shouldn’t “compile” because df(x)
dx = f ′. Thus this statement is equivalent

to saying f ′ = 2x, which doesn’t make sense. But this is the notation most
people use, and you have to get used to it.

Second, people decided that writing df(x)
dx is too painful, and in practice everyone

writes df
dx . This also shouldn’t compile (it would be something like writing

limx→a f , which also doesn’t make sense). But again, it’s the notation most
people use.

To summarize what we have so far:

df(x)

dx

∣∣∣∣
x=a

= 2a becomes
df

dx
= 2x
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10.5 Chain rule

How do we express the chain rule (f◦g)′(x) = f ′(g(x))·g′(x) in Leibniz notation?
In the full and unambiguous version the chain rule ought to look like this:

df(g(x))

dx
=

df(y)

dy

∣∣∣∣
y=g(x)

· dg(x)
dx

But, surprise, nobody does it this way. Usually people say that if y = g(x) and
z = f(y) then:

dz

dx
=

dz

dy
· dy
dx

Let’s go through some examples of using this formula, and then see what’s going
on here. Let z = sin y, y = cosx. Then

dz

dx
=

dz

dy
· dy
dx

= cos y · (− sinx)

= − cos(cosx) · sinx

How about z = sinu, u = x+ x2? Well,

dz

dx
=

dz

du
· du
dx

= cosu · (2x+ 1)

= cos(x+ x2) · (2x+ 1)

How about a more complicated chain z = sin v, v = cosu, u = sinx?

dz

dx
=

dz

dv
· dv
dx

=
dz

dv
· dv
du

· du
dx

= cos v · (− sinu) · cosx
= − cos(cos(sinx) · sin(sinx) · cosx

Now, there are a bunch of notational liberties here:

• y = . . . implicitly defines a function y(x) which is then used in e.g. dy
dx .

But y can also be referenced as a value (e.g. “plot y when x is . . .”). So
the deliniation between functions and the values they take on is blurred.

• dz on the left side of the equations (e.g. in dz
dx ) denotes f ◦ g. But dz on

the right side of the equations (e.g. in dz
dy ) denotes f . In other words, the

denomenator has a bearing on the meaning of the numerator.
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• dz
dy denotes the derivative function, but is also understood to be “an ex-
pression involing y” that must be substituted with the value of y in the
final answer. E.g. in the first example dz

dy is equal to cos y, and we must
then substitute y with cosx.

Despite all these quirks and ambiguities, with some practice we begin to see
how easy and useful the Leibniz notation is. In the next section we will refine
this understanding as we deal with physical problems involving the derivative.

10.6 Implicit differentiation

Suppose we have an equation for a unit circle x2+y2 = 1, and we want to know
y changes with changes in x. We will solve this problem in two ways. First,
using a “brute force” approach by explicitly solving for y and then differentiat-
ing. Second, using a technique called implicit differentiation that considerably
simplifies the problem.

Brute force approach

With the brute force approach we solve for y and differentiate. Observe that
y2 = 1 − x2, and thus there are two solutions (one for half-circle above the
x-axis, and one for half-circle below):

y =
√
1− x2 and y = −

√
1− x2

Differentiating, we get:

y′ = − x√
1− x2

= −x

y
and y′ = − x

−
√
1− x2

= −x

y

Thus y′ = −x
y when y ̸= 0.

Implicit differentiation approach

We now take a different approach and find a solution without explicitly solving
for x. We want to find dy

dx . The first thing we’ll do is take a derivative of each
side of the equations:

x2 + y2 = 1

=⇒ d

dx
(x2 + y2) =

d

dx
1

=⇒ d

dx
x2 +

d

dx
y2 = 0

Now dx2

dx = 2x by a straightforward application of differentiation theorem 6.

But what about dy2

dx ? This would tell us how y2 changes with changes in x (not
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with changes in y), but how to determine that is not obvious. And so we use
the chain rule:15

2x+
dy2

dy
· dy
dx

= 0

=⇒ 2x+ 2y · dy
dx

= 0

=⇒ dy

dx
=

−2x

2y
= −x

y

15This is very handwavy and I’m running out of steam. Spivak discusses implicit differen-
tiation in his chapter on inverse functions, so I expect to come back to this topic later.
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