2 Limits, Part I (Blessed Path)

2.1 Formal limits definition

Definition: lim,_,, f(z) = L when for any ¢ € R there exists § € R such
that for all z, 0 < |z — a| < ¢ implies |f(z) — L| < e. (Also € >0, > 0.)

Here is what this says. Suppose lim,_,, f(z) = L. You pick any interval on the
y-axis around L. Make it as small (or as large) as you want. I’ll produce an
interval on the x-axis around a. You can take any number from my interval,
plug it into f, and the output will stay within the bounds you specified.

So e specifies the distance away from L along the y-axis, and § specifies the
distance away from a along the x-axis. Take any x within ¢ of a, plug it into f,
and the result is guaranteed to be within € of L. lim,_,, f(z) = L just means
there exists such ¢ for any e.

Limit uniqueness

Suppose lim,_,, f(z) = L. It’s easy to assume L is the only limit around a, but
such a thing needs to be proved. We prove this here. More formally, suppose
lim, . f(z) = L and lim,_,, f(z) = M. We prove that L = M.

Suppose for contradiction L # M. Assume without loss of generality L > M.
By limit definition, for all € > 0 there exists a positive § € R such that 0 <
|z — a|] < ¢ implies

o |[f(x)— Ll <e = L—e< f(x)
o |[f(x)—M|<e = f(z)<M+e
for all z. Thus

L—e<flx)<M+e
— L—e< M +e¢
= L —M < 2¢

The above is true for all e. Now let’s narrow our attention and consider a
concrete € = (L — M) /4, which we easily find leads to a contradictionf’}

L — M < 2¢
= (L-M)/4<¢€/2 dividing both sides by 4
= e€<¢/2 recall we set e = (L — M)/4

We have a contradiction, and so L = M as desired.

?note we assumed L > M, thus e = (L — M)/4 > 0



Half-Value Neighborhood Lemma

This lemma will come in handy later, so we may as well prove it now. Suppose
M # 0 and lim,_,, g(z) = M. We show that there exists some § such that
0 < |z —a| < ¢ implies |g(x)| > |M|/2 for all x.

Intuitively, the lemma states the following: when a function g approaches a
nonzero limit M near a point, there exists an interval in which the values of ¢
are closer to M than to zero.

Proof. The claim that |g(x)| > |M]/2 is equivalent to
g(x) < —=[M|/2 or g(z) = |M|/2
There are two possibilities: either M > 0 or M < 0. Let’s consider each

possibility separately.

Case 1. Suppose M > 0. Then to show |g(x)| > |M|/2 it is sufficient to show
either g(z) < —M/2 or g(x) > M /2. We will show g(z) > M/2. Fix e = M/2.
By limit definition there is some ¢ such that 0 < |z — a|] < § implies for all =
lg(x) = M| < M/2
= —-M/2<g(x)-M
= M/2 < g(zx) add M to both sides
= g(x) > M/2 note > is correct but not tight
Case 2. Suppose M < 0. We must show either g(x) < M/2 or g(x) > —M/2.
We will show g(z) < M/2. Fix e = —M/2. Then
lg(z) — M| < —M/2
= g(z) - M < —-M/2
= g(x) < M/2 add M to both sides;

note < is correct but not tight

QED.

2.2 Evaluation mechanics proofs

Armed with the formal definition, we can use it to rigorously prove the five the-
orems useful for evaluating limits (constants, identity, addition, multiplication,
reciprocal). Let’s do that now.

Constants

Let f(z) = c. We prove that lim,_,, f(z) = ¢ for all a.

Let € > 0 be given. Pick any positive §. Then for all z such that 0 < | —a| < 0,
|f(z) —c|=|c—c] =0<e QED.



(Note that we can pick any positive § > 0, e.g. 1,10, %)

Identity
Let f(x) = x. We prove that lim,_,, f(z) = a for all a.

Let € > 0 be given. We need to find § > 0 such that for all z in 0 < |z —a| < 6,
|f(z) —a| = |z —a| <e. Le. we need to find a ¢ such that |z — a| < 0 implies
| — a| < e. This obviously works for any § < e. QED.

(Note the many options for §, e.g. d =€, § = §, etc.)

Addition
Let f,g € R — R. We prove that

T (f -+ 9)() = lim f(2) + lim ()

r—a

Let Ly = lim,_,, f(z) and let Ly = lim,_,4 g(x). Let € > 0 be given. We must
show there exists § > 0 such that for all  bounded by 0 < |z — a| < ¢§ the
following inequality holds:

((f +9)(2) = (Ly + Ly)| < e

Le. we're trying to show lim,_,(f+g)(x) equals to L+ Ly, the sum of the other
two limits. Let’s convert the left side of this inequality into a more convenient
form:

[(f +9)(@) = (Ly + Lg)| = |f(z) + g(x) — (Ly + Ly)|

+
z) — L) + |(g(x) — Ly)| by triangle inequality

By limit definition there exist positive d¢,d, such that for all
e 0<|x—a| <y implies |f(z) — Ly| <¢/2
o 0 <|xr—al <, implies |g(x) — Ly| < €/2

Recall that we can make € as small as we like. Here we pick deltas for €/2
because it’s convenient to make the equations work, as you will see in a second.
For all x bounded by 0 < |z — a| < min(dr, d4) we have

(f(z) = Ly)[ < €¢/2 and  |(g(x) = Ly)| < ¢/2
Fix 0 = min(dy,d4). Then for all z bounded by 0 < |z — a| < § we have



((f +9)(@) = (Ly + L) < [(f(2) = Lg)l + [(9(x) = Ly
<€/24+¢€/2=¢

as desired.

Multiplication
Let f,g € R — R. We prove that

lim (fg)(z) = lim f(z) - lim g(z)

Let Ly = lim,_,, f(z) and let Ly = lim,_,4 g(x). Let € > 0 be given. We must
show there exists 6 > 0 such that for all « bounded by 0 < |z — a| < J the
following inequality holds:

[(F9)(x) = (LyLg)| <€

(i.e. we're trying to show lim, ,,(fg)(x) equals to LyLg, the product of the
other two limits.) Let’s convert the left side of this inequality into a more
convenient form:

|(f9)(x) — (LyLg)| = |f(x)g(x) — LyLg|
= [f(zx)g(x) — Lyg(x) + Lyg(x) — LyLy|
= lg()(f(z) — Ly) + L(g9(x) — Ly)|
<lg(x)(f(z) = Ly)| +|Ls(g(z) — Lg)| by triangle inequality
= lg(@)||f(x) — Ly| + |Lsllg(z) — L] in general [ab| = [al|b]

We now need to show there exists § such that 0 < |x — a| < ¢ implies

lg(@)[[f(x) = Ly + | Lfllg(x) — Ly| <€
We will do that by finding ¢ such that

Lolg(@)[|f(x) — Ll < €/2
2. [Lyllg(x) = Ly| < €/2
First, we show |g(z)||f(x) — Lf| < €/2.

By limit definition we can find 6, to make |f(xz) — Ly| as small as we like.
But how small? To make |g(z)||f(z) — L] < €/2 we must find a delta such
that |f(z) — Ly| < €/2g(z). But to do that we need to get a bound on g(x).
Fortunately we know there exists 5 such that |g(x) — Ly| < 1 (we pick 1 because
we must pick some bound, and 1 is as good as any). Thus |g(x)| < |Lg| + 1.
And so, we can pick d; such that |f(zx) — Ly¢| < €/2(|Ly| + 1).



Second, we show |Ly||g(x) — Lg| < €/2.

That is easy. By limit definition there exists a d3 such that 0 < |z —a| < J3
implies |g(x) — Lg| < €/2|Ly| for all . Actually, we need a 3 such that 0 <

|z —a| < 03 implies |g(z) — Lgy| < s for all  to avoid divide by zero, and

of course that exists too.

Fix § = min(d1, d2,03). Now

[(F9) (@) = (LyLg)| < lg(@)[|f(x) = Ly| + [Lyllg(x) = Lg|
<e/2+ef2=¢

as desired.

Reciprocal

Let lim,_,, f(z) = L. We prove lim,_,, (l) () =1/L when L # 0.

f
First we show % is defined near a. By half-value neighborhood lemma (see )
there exists d; such that 0 < |z — a| < 07 implies |f(x)| > |L|/2 where L # 0.
Therefore f(x) # 0 near a, and thus % near a is defined.

Now all we must do is find a delta such that ‘%(x) — %‘ < €. Let’s make the

equation more convenient:

@ -1 1

L] [f ()]
Above we showed there exists d; such that 0 < |z—a| < §; implies | f(z)| > |L|/2.
Raising both sides to —1 we get \ﬁwﬂ < % Continuing the chain of reasoning
above we get

[fl) L 1 _|f@&)-L] 2
L] [f(@)] =[] L]

- ﬁmm 1)




(if you’re confused about why this inequality works, left-multiply both sides of
|

f(lx)| < 2 by @=Ly Thys we must find 65 such that

=L [Z]
2
L2

That is easy. Since lim,_,, f(2) = L we can make |f(z) — L| as small as we like.

[f(z) = L] <€

Dividing both sides by ﬁ, we must make |f(x) — L| < % Thus we must
fix 6 = min(dq,d2). QED.

2.3 Low-level proofs

While high level theorems allow us to easily compute complicated limits, it’s
instructive to compute a few limits for complicated functions straight from the
definition. We do that here.

Limits of quadratic functions

We will prove directly from the limits definition that lim,_,, 22> = a®. Let € > 0
be given. We must show there exists § such that |22 — a?| < € for all z in
0<|z—al<?.

Observe that

|@* —a®| = |(z — a)(z + a)| = |z — al|z + a
Thus we must pick § such that |x —al|x + a| < e. Since 0 < |z — a| < §, picking
0 conveniently happens to bound |z — al, letting us make it as small as we want.
But to know how small, we need to find an upper bound on |z 4 a|. We can do
it as follows.

Pick an arbitrary § = 1 (we may pick any arbitrary delta, e.g. 1/10, 10, etc.)
Then since |z — a| < §:

|z —a| <1
— —l<zrx—a<l1
— 2a—1<z4+a<2a+1 add 2a to both sides

We now have a bound on z + a, but we need one on |z + a|. It’s easy to see
|z + a] < max(|2a — 1|,]|2a + 1]). By triangle inequality (|a + b| < |a| + |b]):

|2a — 1| < |2a| + | — 1] = |2a| + 1
[2a + 1| < |2a| + |1] = |2a| + 1

Thus |z + a| < |2a| + 1, provided |z — a| < 1. Coming back to our original goal,
|z — al|x + a|] < € when

e |z —al <1and
o [z —a| < g

Putting these together, = min(1, ﬁ)

10



Limits of fractions

We will prove directly from the limits definition that lim,_o % = % Let € >0

be given. We must show there exists § > 0 such that |2 — 3| < ¢ for all z in

0<|z—2] <.

Let’s manipulate |2 — 2| to make it more convenient:
3 3| _|6-3x| 3lz—2
z 2 | 2z | 2 |z
Thus we need to find § such that
3|z —2| -
- €
2 ||
|z —2] 2
|z 3

Conveniently 0 < |z — 2| < § bounds |z — 2|. But now we need to find a bound
for |z|. It would be extra convenient if we could show |z| > 1. Then we could

set § = £ (and thus bound |z — 2| < ¥). A denominator greater than 1 would

only make the fraction smaller than %, ensuring |x|;|2| < % holds.

We will do exactly that. Pick an arbitrary § = 1 (we may pick any arbitrary
delta, e.g. 1/10, 10, etc.) Then since |x — 2| <

lr—2] <1

== —-l<z-2<1
= 1<z<3

= 1< |z| <3

Yes!! Luckily 6 = 1 implies |z| > 1! Thus, provided that |z — 2| < 1 and

|z — 2| < 2, the inequality |2 — 3| < ¢ holds. Putting the two constraints
together, we get § = min(1, 2°).
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