
5 Complete ordered fields

5.1 Motivation

The twelve ordered field axioms are sufficient to define limits, continuity, and
prove all the theorems in the previous sections. Since the set Q of rational num-
bers is an ordered field4, rationals have been sufficient for the work we’ve done
so far. However, we are about to start proving slightly more sophisticated the-
orems about continous functions, and ordered fields will quickly start breaking
our intuitions.

For example, consider the function f(x) = x2 − 2 (a parabola shifted down two
units). It’s easy to see f is a continuous function, and thus our intuition is that
we should be able to draw it without “lifting the tip of the pencil off the sheet
of paper”. Upon reflection however, it becomes obvious that in the universe
limited to ordered fields this is impossible. f intersects the x-axis when x2 = 2,
but every high school student knows

√
2 /∈ Q (see 5.1 for proof). Thus there is

no x ∈ Q such that f(x) = 0. And since Q is an ordered field, it follows ordered
fields alone aren’t sufficient to resolve this problem.

The intermediate value theorem (see 6.1) formalizes the claim that a continuous
function segment that starts below the x-axis and ends above the x-axis inter-
sects the x-axis. But as we can see from the example above, this is not possible
to prove with ordered field axioms alone. So before we proceed with further
study of continuity, we need one more axiom called the completeness axiom,
which we introduce in this chapter.

Combined with the twelve ordered field axioms, the completeness axiom forms
complete ordered fields. These objects are sufficient to proceed with our study of
calculus. We will see that rational numbers Q are not a complete ordered field,
whereas real numbers R are.5 Thus from here R-valued functions will become
our primary object of study.

Aside: sqrt(2) is irrational

Suppose
√
2 ∈ Q. Then there exist a, b ∈ N such that

(
a
b

)2
= 2. Assume

a, b have no common divisor (since we can obviously keep simplifying until this
is the case). Observe that both a and b cannot be even, otherwise we could
simplify further.

Now we have a2 = 2b2. Thus a2 is even, a must be even6, and there exists
k ∈ N such that a = 2k. Then a2 = 4k2 = 2b2 so 2k2 = b2. Thus b2 is even and

4The proof is straightforward, so I’m not including it here.
5Proof that R is a complete ordered field requires construction of R, which doesn’t happen

in Spivak until the last chapters. Thus I will not be delving into that here and ask the reader
(i.e., currently myself) to take this on faith.

6Even numbers have even squares because (2k)2 = 4k2 = 2 · (2k2)
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so b is even. Since both a and b cannot be even, this is a contradiction. Thus√
2 /∈ Q as desired.

5.2 Least Upper Bound

Definition: b is an upper bound for S if s ≤ b for all s ∈ S.

For example:

• Any b ≥ 1 is an upper bound for S = {x : 0 ≤ x < 1}. E.g. 1, 2, 10 are all
upper bounds of S.

• By convention, every number is an upper bound for ∅.

• The set N of natural numbers has no natural upper bound. The proof
is easy. Suppose b ∈ N is an upper bound for N . But b + 1 ∈ N , and
b+ 1 > b, which is a contradiction. Thus b isn’t an upper bound for N .7

Definition: x is a least upper bound of A, if

1. x is an upper bound of A,

2. and if y is an upper bound of A, then x ≤ y.

A set can have only one least upper bound. The proof is easy. Suppose x and
x′ are both least upper bounds of S. Then x ≤ x′ and x′ ≤ x. Thus x = x′.
Consequently, we can use a convenient notation supA to denote the least upper
bound of A.

Obligatory examples:

• Let S = {x : 0 ≤ x < 1}. Then supS = 1.

• By convention, the empty set ∅ has no least upper bound.

5.3 Completeness axiom

We are now ready to state the completeness axiom.

Completeness [P13]: If A is a non-empty set of numbers that has an upper
bound, then it has a least upper bound.

Claim: rational numbers are not complete.
Proof: Let C = {x : x2 < 2 and x ∈ Q}. Suppose for contradiction rational
numbers are complete. Then there exists b ∈ Q such that b = supC. Observe
that

7We need to do a little more work to show N has no upper bound, natural or not. Be
patient! We will prove this by the end of the section.
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• b2 ̸= 2 as that would imply b =
√
2 and thus b /∈ Q.

• b2 ̸< 2 as there would exist some x ∈ C such that b2 < x2 < 2. Thus
b < x and b is not the upper bound.

Therefore b2 > 2. But this implies there exists some x ∈ Q such that 2 < x2 <
b2. Thus x is greater than every element in C, and x < b. So b is not the
least upper bound. We have a contradiction, therefore rational numbers are not
complete, as desired.

Claim: completeness cannot be derived from ordered fields.
Proof: Q is not complete and Q is an ordered field. Thus completeness is not
a property of ordered fields.

Claim: real numbers are complete.
Proof [deferred]: The completeness property can be derived from the con-
struction of real numbers R, which makes reals a complete ordered field.
The proof requires we study the actual construction of R, which Spivak leaves
until the last chapters. Thus for the moment the proof will be taken on faith.
In any case, it is better to build calculus upon abstract complete ordered fields
than upon concrete real numbers.

5.4 Consequences of completeness

N is not bounded above

We’ve shown N has no upper bound in N . Now we show N has no upper bound
in R.

Suppose for contradiction N has an upper bound. Since N ≠ ∅ then by com-
pleteness N has a least upper bound. Let α = supN . Then:

α ≥ n for all n ∈ N
=⇒ α ≥ n+ 1 for all n ∈ N since n+ 1 ∈ N if n ∈ N
=⇒ α− 1 ≥ n for all n ∈ N

Thus α − 1 is also an upper bound for N . This contradicts that α = supN .
Therefore N is not bounded above, as desired.

√
2 exists

We show
√
2 ∈ R. Let S = {y ∈ R : y2 < 2}. Obviously S is non-empty and

has an upper bound. Thus by completeness property it has a least upper bound.
Let x = supS. Note that 1 ∈ S and 2 is an upper bound of S. Thus 1 ≤ x ≤ 2.
We show x2 = 2 by showing x2 ̸< 2 and x2 ̸> 2.
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Case 1. Suppose for contradiction x2 < 2. Let 0 < ϵ < 1 be a small number.
Then

(x+ ϵ)
2
=x2 + 2ϵx+ ϵ2

≤ x2 + 4ϵ+ ϵ since x < 2 and ϵ < 1

= x2 + 5ϵ < 2 since x2 < 2 (by supposition), we can pick

a small enough ϵ to make this true

Thus there exists ϵ such that (x+ ϵ)
2
< 2. By definition of S it follows x+ϵ ∈ S,

which contradics that x is the least upper bound. Therefore x2 ̸< 2

Case 2. Suppose for contradiction x2 > 2. Let 0 < ϵ < 1 be a small number.
Then

(x− ϵ)
2
=x2 − 2ϵx+ ϵ2

≥ x2 − 2ϵx since ϵ2 > 0

≥ x2 − 4ϵ since x ≤ 2

> 2 since x2 > 2 (by supposition), we can pick

a small enough ϵ to make this true

Thus (x− ϵ)
2
> 2, which by definition of S implies x − ϵ > y for all y ∈ S.

So x − ϵ is an upper bound of S. We have a contradiction– since x − ϵ < x, it
follows x is not a least upper bound. Therefore x2 ̸> 2 as desired.

Since x2 ̸< 2 and x2 ̸> 2, it follows x2 = 2 as desired.

Archimedean property

Handwavy definition: the Archimedean property states that you can fill the
universe with tiny grains of sand.

Formal defition: let ϵ > 0 be small and let r > 0 be large. Then there exists
n ∈ N such that nϵ > r.

Proof: suppose for contradiction the property is false. Then there exist ϵ, r
such that for all n ∈ N , nϵ ≤ r. Therefore n ≤ r

ϵ . This implies N is bounded,
which a contradiction.

A useful special case is when r = 1. In this case the Archimedean property can
be restated as follows. Let ϵ > 0 be small. Then there exists n ∈ N such that
nϵ > 1. Put differently, there exists n ∈ N such that 1

n < ϵ.

A few more notes on the Archimedean property:

• Obviously the Archimedean property follows from completeness, as shown
above.
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• The Archimedean property is true in Q and can be proven without being
assumed8.

• Completeness does not follow from the Archimedean property. The proof
is easy: the Archimedean property holds on Q, and we know Q is not
complete as shown above.

Density

Let x, y ∈ R. Then S is a dense subset of R if there is an element of S in
(x, y). Put differently, there is an element of S between any two points in R.

• Obviously R is a dense subset of itself (if x, y ∈ R then x+y
2 ∈ (x, y)).

• Integers are not a dense subset of R. E.g. there is no integer between 1.1
and 1.9.

• The set of positive numbers {x : x ∈ R, x > 0} is not a dense subset of R.
E.g. there is no positive number between −2 and −1.

Claim: the set of rational numbers Q is dense.
Proof: let x, y ∈ R be given. Suppose we can show there exists a rational in
(x, y) for 0 ≤ x < y. Then:

• Given x < y ≤ 0, there is a rational r in (−y,−x). So −r is in (x, y).

• Given x < 0 < y, there is a rational r in (0, y). So r is of course also in
(x, y).

Thus all we must do is prove there exists a rational in (x, y) for 0 ≤ x < y.

Let 0 ≤ x < y be given. By the Archimedean property there exists n ∈ N such
that 1

n < y − x. Because (a) N is unbounded and (b) N is well-ordered, there
exists the least integer m ∈ N such that m ≥ ny.

First, observe that

m− 1 < ny or m wouldn’t be the least integer m ≥ ny

=⇒ m− 1

n
< y

8Excluding the proof here, but it’s fairly simple
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Second, suppose for contradiction m−1
n ≤ x. Then

m− 1

n
≤ x

=⇒ m

n
− 1

n
≤ x

=⇒ − 1

n
≤ x− m

n

=⇒ 1

n
≥ m

n
− x

=⇒ 1

n
≥ y − x recall m ≥ ny, thus

m

n
≥ y

This is a contradiction, thus m−1
n > x.

Therefore m−1
n ∈ (x, y) as desired.

Claim: the set of irrational numbers R \Q is dense.
Proof: let x, y ∈ R be given. By density of the rationals there exists r ∈ Q
such that x√

2
< r < y√

2
. Multiplying each side by

√
2, we get x <

√
2r < y.

We know
√
2r is irrational. Thus there exists an irrational number between any

two numbers in R, and the set of irrationals R \Q is dense as desired.
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