
6 Continuity, Part II (On an Interval)

6.1 Intermediate Value Theorem

Theorem: if f is continuous on [a, b] and f(a) < 0 < f(b), then there exists
x ∈ [a, b] such that f(x) = 0.

Or intuitively, if f(a) is below zero and f(b) is above zero, f must cross the
x-axis somewhere.

Proof: intuitively, we will locate the smallest number x on the x-axis where
f(x) first crosses from negative to positive, and show that f(x) must be zero.

First, we define a set A that contains all inputs to f before f crosses from
negative to positive for the first time:

A = {x : a ≤ x ≤ b, and f is negative on the interval [a, x]}

We know A ̸= ∅ since a ∈ A, and b is an upper bound of A. Thus A has a least
upper bound α such that a ≤ α ≤ b. By nonzero neighborhood lemma (see
4.1) we know there is some interval around a on which f is negative, and some
interval around b on which f is positive. Thus we can further refine the bound
on α to a < α < b.

We now show f(α) = 0 by eliminating the possibilities f(α) < 0 and f(α) > 0.

Case 1. Suppose for contradiction f(α) < 0. By nonzero neighborhood lemma
there exists δ > 0 such |x − α| < δ implies f(x) < 0 for all x. But that means
numbers in (α− δ, α+ δ) are in A. E.g. (α+ δ/2) ∈ A. Since α+ δ/2 > α, α is
not an upper bound of A, and is thus not the least upper bound.

Case 2. Suppose for contradiction f(α) > 0. By nonzero neighborhood lemma
there exists δ > 0 such |x − α| < δ implies f(x) > 0 for all x. But that means
numbers in (α − δ, α + δ) are not in A, and there exist many upper bounds of
A less than α. E.g. α− δ/2 is an upper bound of A, and since α− δ/2 < α, α
is not the least upper bound.

Both cases lead to contradiction, therefore f(α) = 0. QED.

IVT generalization

The intermediate value theorem is usually presented in a more general way. If
f is continuous on [a, b] and f(a) < c < f(b) or f(a) > c > f(b) then there is
some x in [a, b] such that f(x) = c.

Intuitively, f takes on any value between f(a) and f(b) at some point in the
interval [a, b].
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Proof. This trivially follows from the the theorem as initially stated. There
are two cases:

Case 1: f(a) < c < f(b). Let g = f − c. Then g is continuous and g(a) <
0 < g(b). Thus there is some x in [a, b] such that g(x) = 0. But that means
f(x) = c.

Case 2: f(a) > c > f(b). Observe that −f is continuous on [a, b] and −f(a) <
−c < −f(b). By case 1 there is some x in [a, b] such that −f(x) = −c, which
means f(x) = c.

QED.

6.2 Boundedness theorem

The boundedness theorem states that if f is continuous on [a, b], then f is
bounded above (i.e. f lies below some line). Before we prove this, we first prove
a simple lemma.

Bounded neighborhood lemma: if f is continuous at a, then there is δ > 0
such that f is bounded above on the interval (a− δ, a+ δ).

Intuitively, if f is continuous at a then there is some interval around a on which
f is bounded above.

Proof: The proof is trivial. Inlining the definition of continuity, for any ϵ > 0
there exists δ > 0 such that |x− a| < δ implies |f(x)− f(a)| < ϵ for all x. Thus
f(a) + ϵ is the upper bound on f within (a− δ, a+ δ), as desired.

(Note that we can pick any ϵ to concretize the proof, for example ϵ = 1.)

Boundedness theorem: if f is continuous on [a, b], then f is bounded above
on [a, b]. I.e. there is some numbers N such that f(x) ≤ N for all x in [a, b].

Proof: intuitively, we will try to find the smallest number x on the x-axis where
f(x) becomes unbounded above, and discover that there is no such number in
[a, b].

First, we define a set A that contains all inputs to f before f stops being
bounded above:

A = {x : a ≤ x ≤ b, and f is bounded above on [a, x]}

By bounded neighborhood lemma f is bounded above in the neighborhood of
a9. Thus we know A ̸= ∅ because a ∈ A. Further, b is an upper bound of A.
Thus A has a least upper bound.

9We are being sloppy here as we actually need a left-sided and right-sided version of the
bounded neighborhood lemma. I am papering over this for now, but will need to fix at some
point by giving proper one sided proofs
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Let α = supA. To prove the boundedness theorem we must prove two claims:

1. α = b, i.e. f does not ever stop being bounded above before b.

2. (α = b) ∈ A, as supA is not necessarily a member of A.

First, we prove α = b. Suppose for contradiction α < b. By bounded neighbor-
hood lemma there is some δ > 0 such that f is bounded above in (α− δ, α+ δ).
But that means there are many upper bounds greater than α, for example
α+ δ/2. Thus α is not the least upper bound. We have a contradiction, and so
α = b.

Second, we prove (α = b) ∈ A. By bounded neighborhood lemma there is
some δ > 0 such that f is bounded above in (b − δ, b]. Pick any x0 such that
b− δ < x0 < b. Then:

• x0 < b = α. Since α is the least upper bound it follows x0 ∈ A. Thus f is
bounded above on [a, x0].

• f is bounded above on [x0, b].

Since f is bounded above on [a, x0] and on [x0, b], it follows f is bounded above
on [a, b] as desired. QED.

Boundedness theorem generalization

The boundedness theorem is usually presented slightly more generally: it proves
f is bounded above and below. We already proved the former. Put more
formally, the latter states:

If f is continuous on [a, b], then f is bounded below on [a, b]. I.e. there is some
numbers N such that f(x) ≥ N for all x in [a, b].

Proof: observe that −f is continuous on [a, b]. By claim 2 there exists a number
M such that −f(x) ≤ M for all x in [a, b]. But that means f(x) ≥ −M for all
x in [a, b]. QED.

6.3 Extreme Value Theorem

The extreme value theorem states that is f is continuous on [a, b], then f attains
its maximum on [a, b]. To see why we need the extreme value theorem, consider
f = 1

x . f is discontinuous at 0 and approaches infinity. Thus f does not attain
a maximum value on the interval [0, 1].

Extreme value theorem: If f is continuous on [a, b], then there is some
number y in [a, b] such that f(y) ≥ f(x) for all x in [a, b].

Proof: Let A be the set of f ’s outputs on [a, b]:

A = {f(x) : x in [a, b]}
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Since [a, b] isn’t empty, A ̸= ∅. By boundedness theorem, f is bounded on [a, b],
and so A has an upper bound. Thus A has a least upper bound. Let α = supA.
By definition α ≥ f(x) for x in [a, b]. Thus it suffices to show α ∈ A (i.e.
α = f(y) for some y in [a, b]).

Let’s consider a function g10:

g =
1

α− f(x)
, x in [a, b]

Suppose for contradiction α /∈ A. Then the denominator is never zero and g is
continuous. Therefore:

1

α− f(x)
< M by boundedness theorem

for some bound M

=⇒ α− f(x) >
1

M
take reciprocal

=⇒ −f(x) >
1

M
− α

=⇒ f(x) < α− 1

M
times −1

But this contradicts that α is the least upper bound. Thus α ∈ A as desired.
QED.

EVT generalization

The extreme value theorem is usually presented slightly more generally: a con-
tinuous f attains both its maximum and its minimum. We already proved the
former. Put more formally, the latter states:

If f is continuous on [a, b], then there is some number y in [a, b] such that
f(y) ≤ f(x) for all x in [a, b].

Proof: Observe that −f is continous on [a, b]. By claim 3 there is some y in [a, b]
such that −f(y) ≥ −f(x) for all x in [a, b]. But that means that f(y) ≤ f(x)
for all x in [a, b]. QED.

6.4 IVT and EVT consequences

Claim 1a: Every positive number has a square root. I.e. if α > 0, then there
is some number x such that x2 = α.

Proof: Consider the function f(x) = x2. If f takes on the value of α as its
output, then x =

√
α is the input (i.e. x2 = α). Thus all we must show is that

f takes on the value of α.

10g is a bit of a rabbit pulled out of a magic hat, but to quote a great British statesman,
them’s the breaks
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We can do it as follows. Show there exist a, b such that f(a) < α < f(b). Since f
is continuous, by intermediate value theorem there exists x such that f(x) = α.
So, let’s find a and b:

• First, find a such that f(a) < α. Observe that f(0) = 0 < α, thus fix
a = 0.

• Second, find b such that α < f(b).

– If α < 1 then f(1) = 1 > α. Thus fix b = 1.

– If α > 1 then f(α) = α2 > α. Thus fix b = α.

By intermediate value theorem, there is some x in [0, b] such that f(x) = α.
QED.

Claim 1b: Every positive number has an nth root. I.e. if α > 0, then there is
some number x such that xn = α.

Proof: We can use the exact same argument as 1a, just consider f(x) = xn.

Claim 1c: Let n be odd. Then every number has an nth root. I.e. there is
some number x such that xn = α for all α.

Proof: This is also easy:

• Case α > 0. By claim 2b, there is an x such that xn = α.

• Case α < 0. By claim 2b, there is an x such that xn = −α. Then
(−x)n = α.

QED.

Claim 2: If n is odd, then any equation of the form

xn + an−1x
n−1 + . . .+ a0 = 0

has a root.

Proof: Let f(x) = xn+ an−1x
n−1+ . . .+ a0. Here is an intuitive outline of the

proof:

1. We will show that f must take on negative and positive values. Thus by
the intermediate value theorem, there exists some x such that f(x) = 0.

2. To do that we will show that as |x| gets large, xn completely dominates
other terms. (This is obvious if you consider Big-Oh of each term.)

3. Since n is odd, xn takes on a negative value when x is negative, and a
positive value when x is positive. And since xn dominates other terms,
when x is sufficiently large, f takes on both negative and positive values.
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We must find a way to bound the magnitude of an−1x
n−1 + . . . + a0 to show

that for large enough x, it’s smaller than the magnitude of xn. This way we
guarantee f(x) has the same sign as xn. This is trivial to do by adopting Big-Oh
notation, but both math books I looked at do it the old-fashioned way, so we
will too.

Let’s start with some obvious transformations we can make:

|an−1x
n−1 + . . .+ a0| ≤ |an−1x

n−1|+ . . .+ |a0| by triangle inequality

= |an−1||xn−1|+ . . .+ |a0| in general |ab| = |a||b|

If we only consider behavior of f on large x (i.e. when |x| > 1), we can further
bound the expression. Observe that when |x| > 1 then xn−1 > xn−2 > . . . >
x > 1. Therefore:

|an−1x
n−1 + . . .+ a0| ≤ |an−1||xn−1|+ . . .+ |a0|

≤ |an−1||xn−1|+ . . .+ |a0||xn−1|
= xn−1(|an−1|+ . . .+ |a0|)

Let M = |an−1|+ . . .+ |a0|+1, i.e. a bound on the sum of the coefficients, plus
a little extra to ensure M > 1. Then

|an−1x
n−1 + . . .+ a0| ≤ xn−1(|an−1|+ . . .+ |a0|)

< M |xn−1|

Given this bound it follows that for all |x| > 1:

xn −M |xn−1| < xn + (an−1x
n−1 + . . .+ a0) < xn +M |xn−1|

or put differently:

xn −M |xn−1| < f(x) < xn +M |xn−1|

We will now find x1 and x2 such that f(x1) < 0 and f(x2) > 0. Let x1 = −2M
(note that x1 satisfies our condition |x1| > 1 since M > 1). Then for all x ≤ x1:

f(x) < xn +M |xn−1|
= xn +Mxn−1 n is odd, thus n− 1 is even, thus xn−1 > 0

= xn−1(x+M) factor out xn−1

≤ −2n−1Mn substitute −2M and simplify

< 0
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Similarly, let x2 = 2M . Then for all x ≥ x2:

f(x) > xn −M |xn−1|
= xn −Mxn−1

= xn−1(x−M)

≥ 2n−1Mn

> 0

QED.

Claim 3: If n is even and f(x) = xn + an−1x
n−1 + . . . + a0, then there is a

number y such that f(y) ≤ f(x) for all x.

Intuitively, even degree polynomials achieve their minimum on R because when
you zoom out enough they are U-shaped (consider the graph f(x) = x2 as a
simple example).

Proof: It’s easy to intuitively see why the claim makes sense. xn dominates
the rest of the terms when x is very large. Since n is even, xn > 0. Thus on
very large |x| the graph shoots up (i.e. it has a U shape).

Here is the outline for our proof:

1. Observe that f(0) = a0.

2. We will prove f is U-shaped by proving there exist two points:

• x0 < 0 such that f(x) > a0 on (−∞, x0].

• x1 > 0 such that f(x) > a0 on [x1,∞].

3. By extreme value theorem f achieves a minimum m on [x0, x1]. Note
m ≤ a0 (otherwise it wouldn’t be a minimum).

4. Thus f achieves a minimum m on R, as we’ve shown that outside [x0, x1],
f(x) > a0 (and thus f(x) > m) for all x.

All we must do now to complete the proof is find x0 < 0 < x1. Let M =
|an−1|+ . . .+ |a0|+ 1, i.e. a bound on the sum of the coefficients, plus a little
extra to ensure M > 1. In Claim 2 we discovered that for |x| > 1

xn −M |xn−1| < f(x) < xn +M |xn−1|

Let x1 = −2M . Note that x1 satisfies our condition |x1| > 1 since M > 1. Then
for all x < x1:

f(x) > xn −M |xn−1|
= xn +Mxn−1 x is negative, and n− 1 is odd

= xn−1(x+M)

≥ 2n−1Mn substitute −2M and simplify
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Similarly let x2 = 2M . Then for all x > x1:

f(x) > xn −M |xn−1|
= xn +Mxn−1 x is positive

= xn−1(x+M)

≥ 2n−1Mn substitute 2M and simplify

Since M > 1 we have

2n−1Mn ≥ M ≥ |an + 1| ≥ an + 1 > an

Therefore for all x < x1 and x > x2, f(x) > an as desired.

Claim 4: Consider the equation

xn + an−1x
n−1 + . . .+ a0 = c

and suppose n is even. Then there is a number m such that the equation has a
solution for c ≥ m and has no solution for c < m.

Proof: In claim 3 we saw that even degree polynomials achieve a minimum.
Let that be m. There are three cases:

• If c < m there is no solution, as the polynomial doesn’t take on values less
than m.

• If c = m there is a solution, as the polynomial obviously takes on the value
m (by claim 3).

• Suppose c > m. Let y, z ∈ R such that f(y) = m and z > y, f(z) > c.11

Then f(y) = m < c < f(z). By intermediate value theorem there is a
number k in [y, z] such that f(k) = c.

QED.

6.5 Uniform continuity

TODO (skipping until it comes up in Spivak or I hit it in Galvin’s notes)

11Technically we have to prove such a z exists, but somehow Spivak rolls right past this.
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