6 Continuity, Part II (On an Interval)

6.1 Intermediate Value Theorem

Theorem: if f is continuous on [a,b] and f(a) < 0 < f(b), then there exists
z € [a,b] such that f(z) = 0.

Or intuitively, if f(a) is below zero and f(b) is above zero, f must cross the
x-axis somewhere.

Proof: intuitively, we will locate the smallest number x on the z-axis where
f(z) first crosses from negative to positive, and show that f(z) must be zero.

First, we define a set A that contains all inputs to f before f crosses from
negative to positive for the first time:

A={z:a <z <b,and f is negative on the interval [a, 2]}

We know A # () since a € A, and b is an upper bound of A. Thus A has a least
upper bound « such that a < o < b. By nonzero neighborhood lemma (see
we know there is some interval around a on which f is negative, and some
interval around b on which f is positive. Thus we can further refine the bound
on atoa<a<b.

We now show f(«) = 0 by eliminating the possibilities f(«) < 0 and f(«) > 0.

Case 1. Suppose for contradiction f(a) < 0. By nonzero neighborhood lemma
there exists § > 0 such |z — a| < § implies f(z) < 0 for all z. But that means
numbers in (o« — §,« 4 0) are in A. E.g. («+6/2) € A. Since a4+ /2 > «, « is
not an upper bound of A, and is thus not the least upper bound.

Case 2. Suppose for contradiction f(a) > 0. By nonzero neighborhood lemma
there exists § > 0 such |z — a| < § implies f(x) > 0 for all z. But that means
numbers in (o — §,« + §) are not in A, and there exist many upper bounds of
A less than . E.g. a—§/2 is an upper bound of A, and since o — §/2 < «, «
is not the least upper bound.

Both cases lead to contradiction, therefore f(a) = 0. QED.

IVT generalization

The intermediate value theorem is usually presented in a more general way. If
f is continuous on [a,b] and f(a) < ¢ < f(b) or f(a) > ¢ > f(b) then there is
some z in [a, b] such that f(z) = c.

Intuitively, f takes on any value between f(a) and f(b) at some point in the
interval [a, b].
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Proof. This trivially follows from the the theorem as initially stated. There
are two cases:

Case 1: f(a) < ¢ < f(b). Let ¢ = f —c. Then g is continuous and g(a) <
0 < g(b). Thus there is some « in [a,b] such that g(z) = 0. But that means

flz)=c

Case 2: f(a) > ¢ > f(b). Observe that —f is continuous on [a,b] and —f(a) <
—c < —f(b). By case 1 there is some z in [a,b] such that —f(x) = —c¢, which
means f(z) = c.

QED.

6.2 Boundedness theorem

The boundedness theorem states that if f is continuous on [a,b], then f is
bounded above (i.e. f lies below some line). Before we prove this, we first prove
a simple lemma.

Bounded neighborhood lemma: if f is continuous at a, then there is § > 0
such that f is bounded above on the interval (a — §,a + 9).

Intuitively, if f is continuous at a then there is some interval around a on which
f is bounded above.

Proof: The proof is trivial. Inlining the definition of continuity, for any ¢ > 0
there exists § > 0 such that | —a| < § implies |f(z) — f(a)| < € for all 2. Thus
f(a) + € is the upper bound on f within (a — d,a + §), as desired.

(Note that we can pick any € to concretize the proof, for example € = 1.)

Boundedness theorem: if f is continuous on [a, b], then f is bounded above
on [a,b]. Le. there is some numbers N such that f(z) < N for all z in [a, b].

Proof: intuitively, we will try to find the smallest number x on the z-axis where
f(z) becomes unbounded above, and discover that there is no such number in
[a, b].

First, we define a set A that contains all inputs to f before f stops being
bounded above:
A={z:a <z <b,and f is bounded above on [a,z]}

By bounded neighborhood lemma f is bounded above in the neighborhood of
aﬂ Thus we know A # () because a € A. Further, b is an upper bound of A.
Thus A has a least upper bound.

9We are being sloppy here as we actually need a left-sided and right-sided version of the
bounded neighborhood lemma. I am papering over this for now, but will need to fix at some
point by giving proper one sided proofs
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Let a = sup A. To prove the boundedness theorem we must prove two claims:
1. @« =b,i.e. f does not ever stop being bounded above before b.
2. (a4 ="b) € A, as sup A is not necessarily a member of A.

First, we prove a = b. Suppose for contradiction a < b. By bounded neighbor-
hood lemma there is some ¢ > 0 such that f is bounded above in (o —d, a +9).
But that means there are many upper bounds greater than «, for example
a+§/2. Thus « is not the least upper bound. We have a contradiction, and so
a=hbh.

Second, we prove (o« = b) € A. By bounded neighborhood lemma there is
some ¢ > 0 such that f is bounded above in (b — 4,b]. Pick any z( such that
b— 96 <xzg<b. Then:

e 19 < b= . Since « is the least upper bound it follows zg € A. Thus f is
bounded above on [a, ).

e f is bounded above on [z, b].
Since f is bounded above on [a, 2] and on [zg, b], it follows f is bounded above
on [a,b] as desired. QED.
Boundedness theorem generalization

The boundedness theorem is usually presented slightly more generally: it proves
f is bounded above and below. We already proved the former. Put more
formally, the latter states:

If f is continuous on [a,b], then f is bounded below on [a,b]. Le. there is some
numbers N such that f(z) > N for all z in [a, b].

Proof: observe that — f is continuous on [a, b]. By claim 2 there exists a number
M such that —f(x) < M for all z in [a,b]. But that means f(z) > —M for all
z in [a,b]. QED.

6.3 Extreme Value Theorem
The extreme value theorem states that is f is continuous on [a, b], then f attains

its maximum on [a, b]. To see why we need the extreme value theorem, consider

f= % f is discontinuous at 0 and approaches infinity. Thus f does not attain

a maximum value on the interval [0, 1].

Extreme value theorem: If f is continuous on [a,b], then there is some
number y in [a, b] such that f(y) > f(z) for all z in [a, b].

Proof: Let A be the set of f’s outputs on [a, b]:

A={f(z):zin [a,b]}
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Since [a, b] isn’t empty, A # (). By boundedness theorem, f is bounded on [a, b],
and so A has an upper bound. Thus A has a least upper bound. Let a = sup A.
By definition o« > f(x) for = in [a,b]. Thus it suffices to show o € A (i.e.
a = f(y) for some y in [a, b]).

Let’s consider a function ﬂ
1
9= ———F
a— f(x)

Suppose for contradiction « ¢ A. Then the denominator is never zero and g is
continuous. Therefore:

x in [a,b]

1
<M by boundedness theorem
a— f(x)
for some bound M

1

= a— f(z) > i take reciprocal
1

= —f(x)> e

1
= fz)<a-— i times —1

But this contradicts that « is the least upper bound. Thus o € A as desired.
QED.

EVT generalization

The extreme value theorem is usually presented slightly more generally: a con-
tinuous f attains both its maximum and its minimum. We already proved the
former. Put more formally, the latter states:

If f is continuous on [a,b], then there is some number y in [a,b] such that
f(y) < f(z) for all z in [a, b].

Proof: Observe that — f is continous on [a, b]. By claim 3 there is some y in [a, ]
such that —f(y) > —f(z) for all z in [a,b]. But that means that f(y) < f(x)
for all z in [a,b]. QED.

6.4 IVT and EVT consequences

Claim 1la: Every positive number has a square root. Le. if a > 0, then there
is some number x such that 2 = a.

Proof: Consider the function f(z) = x?. If f takes on the value of « as its
output, then x = /a is the input (i.e. 22 = ). Thus all we must show is that
f takes on the value of a.

104 is a bit of a rabbit pulled out of a magic hat, but to quote a great British statesman,
them’s the breaks
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We can do it as follows. Show there exist a, b such that f(a) < a < f(b). Since f
is continuous, by intermediate value theorem there exists = such that f(z) = a.
So, let’s find a and b:

e First, find a such that f(a) < a. Observe that f(0) = 0 < «, thus fix
a=0.

e Second, find b such that o < f(b).

— If a<1then f(1) =1 > a. Thus fix b= 1.
— If @ > 1 then f(a) =a?® > a. Thus fix b = a.

By intermediate value theorem, there is some z in [0,b] such that f(z) = «.
QED.

Claim 1b: Every positive number has an nth root. Le. if a > 0, then there is
some number x such that " = a.

Proof: We can use the exact same argument as la, just consider f(z) = x™.

Claim 1c: Let n be odd. Then every number has an nth root. l.e. there is
some number x such that 2" = « for all .

Proof: This is also easy:
e (Case a > 0. By claim 2b, there is an x such that 2" = «.

e (Case a < 0. By claim 2b, there is an x such that ™ = —a. Then
(—2)" = a.

QED.

Claim 2: If n is odd, then any equation of the form
2"+ ap12" P . +a=0

has a root.

Proof: Let f(x) = 2"+ an_12" 1 +...+ag. Here is an intuitive outline of the
proof:

1. We will show that f must take on negative and positive values. Thus by
the intermediate value theorem, there exists some z such that f(z) = 0.

2. To do that we will show that as |z| gets large, ™ completely dominates
other terms. (This is obvious if you consider Big-Oh of each term.)

3. Since n is odd, z™ takes on a negative value when x is negative, and a
positive value when z is positive. And since ™ dominates other terms,
when z is sufficiently large, f takes on both negative and positive values.
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We must find a way to bound the magnitude of a,_12" ! + ... 4+ ap to show
that for large enough =z, it’s smaller than the magnitude of x™. This way we
guarantee f(x) has the same sign as ™. This is trivial to do by adopting Big-Oh
notation, but both math books I looked at do it the old-fashioned way, so we
will too.

Let’s start with some obvious transformations we can make:

lan_ 12" + .. 4+ ao] < |an_12" | 4+ ...+ |ag] by triangle inequality

= |an_1||z" |+ ...+ |ap| in general |ab| = |a||D|

If we only consider behavior of f on large « (i.e. when |z| > 1), we can further
bound the expression. Observe that when |z| > 1 then 2”71 > 2772 > ... >
2 > 1. Therefore:

lan_12" "+ . 4 ao| < lan_1]|lz" 7 + ...+ |aol
< lJan—1ll2" 7' + .. + ao||l2" |

= x"_1(|an_1| + ...+ ]ao|)

Let M = |ap—1|+...+]ao|+1, i.e. a bound on the sum of the coefficients, plus
a little extra to ensure M > 1. Then

lan_12" 4. 4 agl < 2" (|an_1| + ...+ |ao))
< M|z" !

Given this bound it follows that for all |z| > 1:
" — M|z" 7 < 2™ + (an_12™ " .. Fag) < 2"+ Mz
or put differently:
" — Mz" 7Y < f(z) < 2™ + M|2" |

We will now find z; and z2 such that f(xz;) < 0 and f(z2) > 0. Let 1 = —2M
(note that x; satisfies our condition |x1| > 1 since M > 1). Then for all < z:

flx) <a™ 4+ Mlz" !

="+ Mzt n is odd, thus n — 1 is even, thus 2"~ > 0
= 2" Yx + M) factor out 2"

< —ontipym substitute —2M and simplify

<0
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Similarly, let o = 2M. Then for all x > z5:
f(@) > " — Mlz"|
=" — Ma"!
=2"" Yz — M)
> 2t
>0
QED.

Claim 3: If n is even and f(x) = 2" + a,_12" "' + ... + ao, then there is a
number y such that f(y) < f(z) for all x.

Intuitively, even degree polynomials achieve their minimum on R because when

you zoom out enough they are U-shaped (consider the graph f(z) = 22 as a

simple example).

Proof: It’s easy to intuitively see why the claim makes sense. " dominates
the rest of the terms when x is very large. Since n is even, 2™ > 0. Thus on
very large |z| the graph shoots up (i.e. it has a U shape).
Here is the outline for our proof:
1. Observe that f(0) = ag.
2. We will prove f is U-shaped by proving there exist two points:
e 1y < 0 such that f(z) > ap on (—o0,zo].
e 1 > 0 such that f(z) > ag on [z, 0.

3. By extreme value theorem f achieves a minimum m on [zg,x1]. Note
m < ag (otherwise it wouldn’t be a minimum).

4. Thus f achieves a minimum m on R, as we’ve shown that outside [z, z1],
f(z) > ag (and thus f(z) > m) for all z.

All we must do now to complete the proof is find zog < 0 < z;. Let M =
|an—1] + ...+ |ag| + 1, i.e. a bound on the sum of the coefficients, plus a little
extra to ensure M > 1. In Claim 2 we discovered that for |z| > 1

" — M|z" 7Y < f(x) < 2™ + M|z" |

Let 1 = —2M. Note that 2 satisfies our condition |z1| > 1 since M > 1. Then
for all z < z1:

fla) >a™ — Mz"""

="+ Mz" ! x is negative, and n — 1 is odd
=2" Yz + M)
> on-lym substitute —2M and simplify
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Similarly let zo = 2M. Then for all > x1:

f(@) > a" — M|a"""|

="+ Mzt x is positive
=" Hx + M)
> on—lym substitute 2/ and simplify

Since M > 1 we have
2" MM > M > |a, + 1] > a, + 1> ay,
Therefore for all x < 21 and = > xs, f(z) > a, as desired.
Claim 4: Consider the equation
2"t ap 12" M+ Fag=c

and suppose n is even. Then there is a number m such that the equation has a
solution for ¢ > m and has no solution for ¢ < m.

Proof: In claim 3 we saw that even degree polynomials achieve a minimum.
Let that be m. There are three cases:

e If ¢ < m there is no solution, as the polynomial doesn’t take on values less
than m.

e If ¢ = m there is a solution, as the polynomial obviously takes on the value
m (by claim 3).

e Suppose ¢ > m. Let y,z € R such that f(y) = m and z > y, f(z) > CB
Then f(y) = m < ¢ < f(z). By intermediate value theorem there is a
number k in [y, z] such that f(k) = c.

QED.

6.5 Uniform continuity

TODO (skipping until it comes up in Spivak or I hit it in Galvin’s notes)

M Technically we have to prove such a z exists, but somehow Spivak rolls right past this.
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