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0 Preface

I’m working through Spivak Calculus. Around the chapter on epsilon-delta lim-
its the details get pretty confusing. I started supplementing with David Galvin’s
notes, which are often more clear but are still confusing. This is surprising be-
cause the topic of limits doesn’t use anything beyond basic middle school math.
Feels like it should be simple! And so I started writing these notes to properly
understand the damned thing.

Some departures from the structure of Spivak’s text:

• I start with limits here.

• The very first chapter in these notes covers prerequisites necessary to study
limits– some really basic limits intuitions, and material on bounding values
with inequalities.

• In general each chapter in Spivak weaves between introducing concepts,
exploring degenerate cases, showing examples of practice problems, and
proving theorems. In my view this is delightful if you already understand
the material, but distracting if you’re trying to understand it for the first
time. So instead I separate these categories into clear sections. I introduce
concepts and proofs as quickly as possible (i.e. “the blessed path”), then
have a separate section on edge cases, etc. I tend to skip and backtrack a
lot through Spivak’s material. The order of these notes reflects the order
in which I internalized Spivak’s text.

• This sometimes happens not only within a chapter, but also across chap-
ters. Chapters 7 (Three Hard Theorems) and 8 (Least Upper Bounds) are
swapped in these notes. Spivak first introduces the Intermediate Value
theorem and the Extreme Value theorem as facts, then proves their con-
sequences, then introduces completeness and its consequences, and finally
proves IVT and EVT. I find it distracting and confusing. I introduce com-
pleteness and its consequences first. I then introduce and prove IVT and
EVT, and finally cover their consequences. IMO this approach is much
less confusing than Spivak’s.

• Spivak covers various of trigonometric functions as he goes through the
book. In the early chapters I found it distracting as I didn’t know any
trig. I eventually buckled down and learned enough, and then revisited
everything I skipped. I go through this exercise in chapter 8 of these notes.

• I break up derivatives into four chapters instead of three. The additional
chapter is on the Leibniz notation. The issues of notation are sufficiently
confusing that I found it difficult to study the concept of derivatives and
two notational systems at the same time. Also, Leibniz notation requires
considerable practice to internalize. So it gets its own chapter.
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1 Limits, Part 0 (Prereqs)

Before we formally define limits, it helps to have a handwavy intuition for limits
mechanics, and to understand inequalities. In this chapter we learn these prereqs
as quickly as possible.

1.1 Handwavy limits definition

Here I only present a hand-wavy definition of limits and use it to explain the
mechanics of computing limits of functions in practice. A proper definition and
proofs of the theorems that make the mechanics work come in a later chapter.

A hand-wavy definition: a limit of f(x) at a is the value f(x) approaches
close to (but not necessarily at) a.

A slightly less hand-wavy definition: let f : R → R, let a ∈ R be some
number on the x-axis, and let l ∈ R be some number on the y-axis. Then as x
gets closer to a, f(x) gets closer to l.

The notation for this whole thing is

lim
x→a

f(x) = l

So for example limx→5 x
2 = 25 because the closer x gets to 5, the closer x2 gets

to 25 (we’ll prove all this properly soon). Now suppose you have some fancy
pants function like this one:

lim
x→0

1−
√
x

1− x
(1)

If you plot it, it’s easy to see that as x approaches 0, the whole shebang ap-
proaches 1. But how do you algebraically evaluate the limit of this thing? Can
you just plug 0 into the equation? It seems to work, but once we formally de-
fine limits, we’ll have to prove somehow that plugging a = 0 into x gives us the
correct result.

1.2 Limits evaluation mechanics

It turns out that it does in fact work because of a few theorems that make
practical evaluation of many limits easy. Here I’ll state these theorems as facts.
Once I introduce the formal definition of limits in a later chapter I’ll properly
prove them.

1. Constants. limx→a c = c, where c ∈ R. In other words if the function is
a constant, e.g. f(x) = 5, then limx→a f(x) = 5 for any a.

2. Identity. limx→a x = a. In other words if the function is an identity
function f(x) = x, then limx→6 f(x) = 6. Meaning we simply plug a into
x.
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3. Addition1. limx→a(f + g)(x) = limx→a f(x)+ limx→a g(x). For example
limx→a(x+ 2) = limx→a x+ limx→a 2 = a+ 2.

4. Multiplication. limx→a(f · g)(x) = limx→a f(x) · limx→a g(x). For ex-
ample limx→a 2x = limx→a 2 · limx→a x = 2a.

5. Reciprocal. limx→a

(
1
f

)
(x) = 1

limx→a f(x) when the denominator isn’t

zero. For example limx→a
1
x = 1

limx→a x = 1
a for a ̸= 0.

To come back to 1, these theorems tells us that

lim
x→0

1−
√
x

1− x
=

limx→0 1− (limx→0 x)
1
2

limx→0 1− limx→0 x
=

1− 0
1
2

1− 0
= 1

Holes

What happens if we try to take a limit as x → 1 rather than x → 0?

lim
x→1

1−
√
x

1− x

We can’t use the same trick and plug in 1 because we get a nonsensical result
0/0 as the function isn’t defined at 0. If we plot it, we clearly see the limit
approaches 1/2 at 0, but how do we prove this algebraically? The answer is to
do some trickery to find a way to cancel out the inconvenient term (in this case
1−

√
x)

lim
x→1

1−
√
x

1− x
= lim

x→1

1−
√
x

(1−
√
x)(1 +

√
x)

= lim
x→1

1

1 +
√
x
=

1

2

Why is it ok here to divide by 1−
√
x? Good question! Recall that the limit is

defined close to a (or around a, or as x approaches a), but not at a. In other
words f(a) need not even be defined (as is the case here). This means that as
we consider 1 −

√
x at different values of x as it approaches a, the limit never

requires us to evaluate the function at x = a. So we never have to consider
1−

√
x as x = 1, 1 −

√
x never takes on the value of 0, and it is safe to divide

it out.

1.3 Absolute value inequalities

Consider an inequality 0 < |x − a| < δ. This will come up a lot soon. What
does this inequality mean? The intuitive reading is that the difference between
x and a is between 0 and δ. But it’s a little subtle, so let’s look at it carefully.
There are actually two inequalities here: 0 < |x− a| and |x− a| < δ. We should
consider each separately.

1Spivak’s book uses a slightly more verbose definition that assumes the limits of f and g
exist near a, see p. 103
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The left side, 0 < |x− a| is equivalent to |x− a| > 0. But |x− a| is an absolute
value, it’s always true that |x − a| ≥ 0. So this part of the inequality says
x− a ̸= 0, or x ̸= a. I don’t know why mathematicians say 0 < |x− a| instead
of x ̸= a, probably because confusing you brings them pleasure.

The right side is |x − a| < δ. Intuitively this says that the difference between
x and a should be less than δ. Put differently, x should be within δ of a.
Algebraically we can write it as two cases:

1. x− a < δ

2. −(x− a) < δ

A little basic manipulation, and we can rewrite this as a− δ < x < a+ δ.

1.4 Bounding with inequalities

We will often need to make an inequality of the following form work out:

|n||m| < ϵ

Here ϵ is given to us, we have complete control over the upper bound of |n|,
and |m| can take on values outside our direct control. Obviously we can’t make
the inequality work without knowing something about |m|, so we’ll try to find
a bound for it in terms of other fixed values, or values we control.

For example, suppose we’ve discovered there is a fixed value a, and that |m| <
3|a|+ 4. Given that we control |n|, how do we bound it in terms of ϵ and |a| in
such a way that the inequality |n||m| < ϵ holds?

Since we control |n| and (3|a| + 4) is fixed, we can find |n| small enough so
that |n|(3|a| + 4) < ϵ holds. Then certainly any inequality whose left side is
smaller, e.g. |n|(3|a| + 3) < ϵ, will also hold. And since |m| is always smaller
than 3|a|+ 4, it follows |n||m| < ϵ will hold as well.

All we have left to do is find a bound for |n| such that |n|(3|a| + 4) < ϵ holds,
which is of course easy:

|n| < ϵ

3|a|+ 4

Having bound |n| in this way, we can verify that |n|(3|a| + 4) < ϵ holds by
multiplying both sides of the above inequality by 3|a|+ 4.
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2 Limits, Part I (Blessed Path)

2.1 Formal limits definition

Definition: limx→a f(x) = L when for any ϵ ∈ R there exists δ ∈ R such
that for all x, 0 < |x− a| < δ implies |f(x)− L| < ϵ. (Also ϵ > 0, δ > 0.)

Here is what this says. Suppose limx→a f(x) = L. You pick any interval on the
y-axis around L. Make it as small (or as large) as you want. I’ll produce an
interval on the x-axis around a. You can take any number from my interval,
plug it into f , and the output will stay within the bounds you specified.

So ϵ specifies the distance away from L along the y-axis, and δ specifies the
distance away from a along the x-axis. Take any x within δ of a, plug it into f ,
and the result is guaranteed to be within ϵ of L. limx→a f(x) = L just means
there exists such δ for any ϵ.

Limit uniqueness

Suppose limx→a f(x) = L. It’s easy to assume L is the only limit around a, but
such a thing needs to be proved. We prove this here. More formally, suppose
limx→a f(x) = L and limx→a f(x) = M . We prove that L = M .

Suppose for contradiction L ̸= M . Assume without loss of generality L > M .
By limit definition, for all ϵ > 0 there exists a positive δ ∈ R such that 0 <
|x− a| < δ implies

• |f(x)− L| < ϵ =⇒ L− ϵ < f(x)

• |f(x)−M | < ϵ =⇒ f(x) < M + ϵ

for all x. Thus

L− ϵ < f(x) < M + ϵ

=⇒ L− ϵ < M + ϵ

=⇒ L−M < 2ϵ

The above is true for all ϵ. Now let’s narrow our attention and consider a
concrete ϵ = (L−M)/4, which we easily find leads to a contradiction2:

L−M < 2ϵ

=⇒ (L−M)/4 < ϵ/2 dividing both sides by 4

=⇒ ϵ < ϵ/2 recall we set ϵ = (L−M)/4

We have a contradiction, and so L = M as desired.

2note we assumed L > M , thus ϵ = (L−M)/4 > 0
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Half-Value Neighborhood Lemma

This lemma will come in handy later, so we may as well prove it now. Suppose
M ̸= 0 and limx→a g(x) = M . We show that there exists some δ such that
0 < |x− a| < δ implies |g(x)| ≥ |M |/2 for all x.

Intuitively, the lemma states the following: when a function g approaches a
nonzero limit M near a point, there exists an interval in which the values of g
are closer to M than to zero.

Proof. The claim that |g(x)| ≥ |M |/2 is equivalent to

g(x) ≤ −|M |/2 or g(x) ≥ |M |/2

There are two possibilities: either M > 0 or M < 0. Let’s consider each
possibility separately.

Case 1. Suppose M > 0. Then to show |g(x)| ≥ |M |/2 it is sufficient to show
either g(x) ≤ −M/2 or g(x) ≥ M/2. We will show g(x) ≥ M/2. Fix ϵ = M/2.
By limit definition there is some δ such that 0 < |x− a| < δ implies for all x

|g(x)−M | < M/2

=⇒ −M/2 < g(x)−M

=⇒ M/2 < g(x) add M to both sides

=⇒ g(x) > M/2 note ≥ is correct but not tight

Case 2. Suppose M < 0. We must show either g(x) ≤ M/2 or g(x) ≥ −M/2.
We will show g(x) ≤ M/2. Fix ϵ = −M/2. Then

|g(x)−M | < −M/2

=⇒ g(x)−M < −M/2

=⇒ g(x) < M/2 add M to both sides;

note ≤ is correct but not tight

QED.

2.2 Evaluation mechanics proofs

Armed with the formal definition, we can use it to rigorously prove the five the-
orems useful for evaluating limits (constants, identity, addition, multiplication,
reciprocal). Let’s do that now.

Constants

Let f(x) = c. We prove that limx→a f(x) = c for all a.

Let ϵ > 0 be given. Pick any positive δ. Then for all x such that 0 < |x−a| < δ,
|f(x)− c| = |c− c| = 0 < ϵ. QED.
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(Note that we can pick any positive δ > 0, e.g. 1, 10, 1
10 .)

Identity

Let f(x) = x. We prove that limx→a f(x) = a for all a.

Let ϵ > 0 be given. We need to find δ > 0 such that for all x in 0 < |x− a| < δ,
|f(x) − a| = |x − a| < ϵ. I.e. we need to find a δ such that |x − a| < δ implies
|x− a| < ϵ. This obviously works for any δ ≤ ϵ. QED.

(Note the many options for δ, e.g. δ = ϵ, δ = ϵ
2 , etc.)

Addition

Let f, g ∈ R → R. We prove that

lim
x→a

(f + g)(x) = lim
x→a

f(x) + lim
x→a

g(x)

Let Lf = limx→a f(x) and let Lg = limx→a g(x). Let ϵ > 0 be given. We must
show there exists δ > 0 such that for all x bounded by 0 < |x − a| < δ the
following inequality holds:

|(f + g)(x)− (Lf + Lg)| < ϵ

I.e. we’re trying to show limx→a(f+g)(x) equals to Lf+Lg, the sum of the other
two limits. Let’s convert the left side of this inequality into a more convenient
form:

|(f + g)(x)− (Lf + Lg)| = |f(x) + g(x)− (Lf + Lg)|
= |(f(x)− Lf ) + (g(x)− Lg)|
≤ |(f(x)− Lf )|+ |(g(x)− Lg)| by triangle inequality

By limit definition there exist positive δf , δg such that for all x

• 0 < |x− a| < δf implies |f(x)− Lf | < ϵ/2

• 0 < |x− a| < δg implies |g(x)− Lg| < ϵ/2

Recall that we can make ϵ as small as we like. Here we pick deltas for ϵ/2
because it’s convenient to make the equations work, as you will see in a second.
For all x bounded by 0 < |x− a| < min(δf , δg) we have

|(f(x)− Lf )| < ϵ/2 and |(g(x)− Lg)| < ϵ/2

Fix δ = min(δf , δg). Then for all x bounded by 0 < |x− a| < δ we have
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|(f + g)(x)− (Lf + Lg)| ≤ |(f(x)− Lf )|+ |(g(x)− Lg)|
< ϵ/2 + ϵ/2 = ϵ

as desired.

Multiplication

Let f, g ∈ R → R. We prove that

lim
x→a

(fg)(x) = lim
x→a

f(x) · lim
x→a

g(x)

Let Lf = limx→a f(x) and let Lg = limx→a g(x). Let ϵ > 0 be given. We must
show there exists δ > 0 such that for all x bounded by 0 < |x − a| < δ the
following inequality holds:

|(fg)(x)− (LfLg)| < ϵ

(i.e. we’re trying to show limx→a(fg)(x) equals to LfLg, the product of the
other two limits.) Let’s convert the left side of this inequality into a more
convenient form:

|(fg)(x)− (LfLg)| = |f(x)g(x)− LfLg|
= |f(x)g(x)− Lfg(x) + Lfg(x)− LfLg|
= |g(x)(f(x)− Lf ) + Lf (g(x)− Lg)|
≤ |g(x)(f(x)− Lf )|+ |Lf (g(x)− Lg)| by triangle inequality

= |g(x)||f(x)− Lf |+ |Lf ||g(x)− Lg| in general |ab| = |a||b|

We now need to show there exists δ such that 0 < |x− a| < δ implies

|g(x)||f(x)− Lf |+ |Lf ||g(x)− Lg| < ϵ

We will do that by finding δ such that

1. |g(x)||f(x)− Lf | < ϵ/2

2. |Lf ||g(x)− Lg| < ϵ/2

First, we show |g(x)||f(x)− Lf | < ϵ/2.

By limit definition we can find δ1 to make |f(x) − Lf | as small as we like.
But how small? To make |g(x)||f(x) − Lf | < ϵ/2 we must find a delta such
that |f(x) − Lf | < ϵ/2g(x). But to do that we need to get a bound on g(x).
Fortunately we know there exists δ2 such that |g(x)−Lg| < 1 (we pick 1 because
we must pick some bound, and 1 is as good as any). Thus |g(x)| < |Lg| + 1.
And so, we can pick δ1 such that |f(x)− Lf | < ϵ/2(|Lg|+ 1).
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Second, we show |Lf ||g(x)− Lg| < ϵ/2.

That is easy. By limit definition there exists a δ3 such that 0 < |x − a| < δ3
implies |g(x) − Lg| < ϵ/2|Lf | for all x. Actually, we need a δ3 such that 0 <
|x− a| < δ3 implies |g(x)−Lg| < ϵ

2(|Lf |+1) for all x to avoid divide by zero, and

of course that exists too.

Fix δ = min(δ1, δ2, δ3). Now

|(fg)(x)− (LfLg)| ≤ |g(x)||f(x)− Lf |+ |Lf ||g(x)− Lg|
< e/2 + e/2 = e

as desired.

Reciprocal

Let limx→a f(x) = L. We prove limx→a

(
1
f

)
(x) = 1/L when L ̸= 0.

First we show 1
f is defined near a. By half-value neighborhood lemma (see 2.1)

there exists δ1 such that 0 < |x − a| < δ1 implies |f(x)| ≥ |L|/2 where L ̸= 0.
Therefore f(x) ̸= 0 near a, and thus 1

f near a is defined.

Now all we must do is find a delta such that
∣∣∣ 1f (x)− 1

L

∣∣∣ < ϵ. Let’s make the

equation more convenient:

∣∣∣∣ 1f (x)− 1

L

∣∣∣∣ = ∣∣∣∣ 1

f(x)
− 1

L

∣∣∣∣
=

∣∣∣∣L− f(x)

Lf(x)

∣∣∣∣
=

|f(x)− L|
|L||f(x)|

=
|f(x)− L|

|L|
· 1

|f(x)|

Above we showed there exists δ1 such that 0 < |x−a| < δ1 implies |f(x)| ≥ |L|/2.
Raising both sides to −1 we get | 1

f(x) | ≤
2
|L| . Continuing the chain of reasoning

above we get

|f(x)− L|
|L|

· 1

|f(x)|
≤ |f(x)− L|

|L|
· 2

|L|

=
2

|L|2
|f(x)− L|
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(if you’re confused about why this inequality works, left-multiply both sides of

| 1
f(x) | ≤

2
|L| by

|f(x)−L|
|L| .) Thus we must find δ2 such that

2

|L|2
|f(x)− L| < ϵ

That is easy. Since limx→a f(x) = L we can make |f(x)−L| as small as we like.

Dividing both sides by 2
|L|2 , we must make |f(x) − L| < |L|2ϵ

2 . Thus we must

fix δ = min(δ1, δ2). QED.

2.3 Low-level proofs

While high level theorems allow us to easily compute complicated limits, it’s
instructive to compute a few limits for complicated functions straight from the
definition. We do that here.

Limits of quadratic functions

We will prove directly from the limits definition that limx→a x
2 = a2. Let ϵ > 0

be given. We must show there exists δ such that |x2 − a2| < ϵ for all x in
0 < |x− a| < δ.

Observe that
|x2 − a2| = |(x− a)(x+ a)| = |x− a||x+ a|

Thus we must pick δ such that |x− a||x+ a| < ϵ. Since 0 < |x− a| < δ, picking
δ conveniently happens to bound |x−a|, letting us make it as small as we want.
But to know how small, we need to find an upper bound on |x+ a|. We can do
it as follows.

Pick an arbitrary δ = 1 (we may pick any arbitrary delta, e.g. 1/10, 10, etc.)
Then since |x− a| < δ:

|x− a| < 1

=⇒ −1 < x− a < 1

=⇒ 2a− 1 < x+ a < 2a+ 1 add 2a to both sides

We now have a bound on x + a, but we need one on |x + a|. It’s easy to see
|x+ a| < max(|2a− 1|, |2a+ 1|). By triangle inequality (|a+ b| ≤ |a|+ |b|):

|2a− 1| ≤ |2a|+ | − 1| = |2a|+ 1

|2a+ 1| ≤ |2a|+ |1| = |2a|+ 1

Thus |x+ a| < |2a|+1, provided |x− a| < 1. Coming back to our original goal,
|x− a||x+ a| < ϵ when

• |x− a| < 1 and

• |x− a| < ϵ
|2a|+1

Putting these together, δ = min(1, ϵ
|2a|+1 ).
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Limits of fractions

We will prove directly from the limits definition that limx→2
3
x = 3

2 . Let ϵ > 0
be given. We must show there exists δ > 0 such that | 3x − 3

2 | < ϵ for all x in
0 < |x− 2| < δ.

Let’s manipulate | 3x − 3
2 | to make it more convenient:∣∣∣∣ 3x − 3

2

∣∣∣∣ = ∣∣∣∣6− 3x

2x

∣∣∣∣ = 3

2

|x− 2|
|x|

Thus we need to find δ such that

3

2

|x− 2|
|x|

< ϵ

=⇒ |x− 2|
|x|

<
2ϵ

3

Conveniently 0 < |x− 2| < δ bounds |x− 2|. But now we need to find a bound
for |x|. It would be extra convenient if we could show |x| > 1. Then we could
set δ = 2ϵ

3 (and thus bound |x− 2| < 2ϵ
3 ). A denominator greater than 1 would

only make the fraction smaller than 2ϵ
3 , ensuring

|x−2|
|x| < 2ϵ

3 holds.

We will do exactly that. Pick an arbitrary δ = 1 (we may pick any arbitrary
delta, e.g. 1/10, 10, etc.) Then since |x− 2| < δ

|x− 2| < 1

=⇒ −1 < x− 2 < 1

=⇒ 1 < x < 3

=⇒ 1 < |x| < 3

Yes!! Luckily δ = 1 implies |x| > 1! Thus, provided that |x − 2| < 1 and
|x − 2| < 2ϵ

3 , the inequality | 3x − 3
2 | < ϵ holds. Putting the two constraints

together, we get δ = min(1, 2ϵ
3 ).
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3 Limits, Part II (Edge Cases)

3.1 Absence of limits

What does it mean to say L is not a limit of f(x) at a? It flows out of the
definition– there exist some ϵ such that for any δ there exists an x in 0 <
|x− a| < δ such that |f(x)− L| ≥ ϵ.

A stronger version is to say there is no limit of f(x) at a. To do that we must
prove that any L is not a limit of f(x) at a.

Example: Absolute value fraction

Consider f(x) = x
|x| . It’s easy to see that

f(x) =

{
−1 if x < 0

1 if x > 0

We will show there is no limit of f(x) near 0.

Weak version. First, let’s prove a weak version– that limx→0 f(x) ̸= 0. That
is easy. Pick some reasonably small epsilon, say ϵ = 1

10 . We must show that for
any δ there exists an x in 0 < |x− a| < δ such that |f(x)− 0| ≥ 1

10 .

Let’s pick some arbitrary x out of our permitted interval, say x = δ/2. Then

|f(x)− 0| = |f(δ/2)| =
∣∣∣∣ δ/2|δ/2|

∣∣∣∣ = 1 ≥ 1

10

Strong version. Now we prove that limx→0 f(x) ̸= L for any L. Sticking
with ϵ = 1

10 we proceed as follows.

If L < 0 take x = δ/2. Then

|f(x)− L| = |f(δ/2)− L| =
∣∣∣∣ δ/2|δ/2|

− L

∣∣∣∣ = |1− L| > 1

10

Similarly if L ≥ 0 take x = −δ/2. Then

|f(x)− L| = |f(−δ/2)− L| =
∣∣∣∣ −δ/2

| − δ/2|
− L

∣∣∣∣ = | − 1− L| > 1

10

Example: Dirichlet function

The dirichlet function f is defined as follows:

f(x) =

{
1 for rational x,

0 for irrational x.

We prove limx→a f(x) does not exist for any a.

15



Proof. Let ϵ = 1
10 . Suppose for contradiction there exists L such that limx→a f(x) =

L. There are two possibilities: either L ≤ 1
2 or L > 1

2 .

First suppose L ≤ 1
2 . Pick any rational x from the interval 0 < |x − a| < δ.

Then |f(x)− L| = |1− L| ≥ 1
2 . Thus |f(x)− L| ≥ 1

10 .

Similarly, suppose L > 1
2 . Pick any irrational x from the interval 0 < |x−a| < δ.

Then |f(x)− L| = |0− L| > 1
2 . Thus |f(x)− L| ≥ 1

10 .

Thus limx→a f(x) does not exist for any a, as desired.

3.2 One-sided limits

We have seen that the following function has no limit approaching 0:

f(x) =

{
−1 x < 0,

1 x > 0

However, f has properties around 0 we may want to be able to formally describe.
First, intuitively f approaches −1 as we approach zero from the left (from
“below”). Not surprisingly, a notation for this exists:

lim
x→0−

f(x) = −1

If we take l = −1, this notation compiles down to the following definition. For
every ϵ > 0 there exists δ > 0 such that 0 < a− x < δ implies |f(x)− l| < ϵ for
all x. This is our usual limit definition, except instead of looking at both sides
of a, the inequality 0 < a− x says x < a (i.e. we look from left of a).

Second, intuitively f approaches 1 as we approach zero from the right (from
“above”). The notation for this is:

lim
x→0+

f(x) = 1

If we take l = 1, the definition is as follows. For every ϵ > 0 there exists
δ > 0 such that 0 < x− a < δ implies |f(x)− l| < ϵ for all x. Again, this is our
usual limit definition, except instead of looking at both sides of a, the inequality
0 < x− a says x > a (i.e. we look from right of a).

3.3 Limits at infinity

Consider the function f(x) = 1
x . Clearly as x gets very large, f(x) trends toward

zero. Again, we have a notation that encodes this property of f :

lim
x→∞

1

x
= 0

Take l = 0, and this compiles down to the following definition. For every ϵ > 0
there is a number N such that |f(x)− l| < ϵ for all x > N .
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Intuitively, for any ϵ, f(x) will get within ϵ of the limit for x large enough. Here
we simply produce a large enough N instead of δ.

3.4 Infinite limits

Consider the function f(x) = 1
x2 . Near zero f shoots up, and again, we want to

be able to encode that. The notation for this property is

lim
x→0

f(x) = ∞

This compiles down to the following definition. Given any M > 0 there exists
δ > 0 such that 0 < |x−a| < δ implies f(x) > M for all x. Intuitively, given an
arbitrarily large f(x) = M we can produce a bound on the x-axis, within which
f(x) is never smaller than M .

Example. Suppose we want to prove limx→0
1
x2 = ∞. Let M > 0 be given. We

must produce δ > 0 such that 0 < |x| < δ implies 1
x2 > M for all x. Suppose

we fix |x| < 1√
M
. Then:

|x| < 1√
M

note M > 0

=⇒ x2 <
1

M

=⇒ 1

x2
> M

Thus δ ≤ 1√
M

implies 1
x2 > M as desired.
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4 Continuity, Part I (On a Point)

4.1 Definition of continuity

A function f is continuous at a when

lim
x→a

f(x) = f(a)

Inlining the limits definition, f is continuous at a if for all ϵ > 0 there exists
δ > 0 such that 0 < |x− a| < δ implies |f(x)− f(a)| < ϵ.

We can simplify this definition slightly. Observe that in continuous functions
f(a) exists, and at x = a we get f(x) − f(a) = 0. Thus we can relax the
constraint 0 < |x− a| < δ to |x− a| < δ.

A function f is continuous on an interval (a, b) if it’s continuous at all
c ∈ (a, b)3.

Nonzero Neighborhood Lemma

Armed with these definitions we can extend the half-value neighborhood lemma
(see 2.1) in a useful way. The nonzero neighborhood lemma will come in handy
when we prove the intermediate value theorem (see 6.1), so we may as well prove
the lemma now.

Suppose f is continuous at a, and f(a) ̸= 0. Then there exists δ > 0 such that:

1. if f(a) < 0 then f(x) < 0 for all x in |x− a| < δ.

2. if f(a) > 0 then f(x) > 0 for all x in |x− a| < δ.

Intuitively the lemma states that there is some interval around a on which
f(x) ̸= 0 and has the same sign as f(a).

Proof. The proof follows trivially from the half-value neighborhood lemma.

4.2 Recognizing continuous functions

The following theorems allow us to tell at a glance that large classes of functions
are continuous (e.g. polynomials, rational functions, etc.)

Five easy proofs

Constants. Let f(x) = c. Then f is continuous at all a because

lim
x→a

f(x) = c = f(a)

3Closed intervals are a tiny bit harder, and I’m keeping them out for brevity.
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Identity. Let f(x) = x. Then f is continuous at all a because

lim
x→a

f(x) = a = f(a)

Addition. Let f, g ∈ R → R be continuous at a. Then f + g is continuous at
a because

lim
x→a

(f + g)(x) = lim
x→a

f(x) + lim
x→a

g(x) = f(a) + g(a) = (f + g)(a)

Multiplication. Let f, g ∈ R → R be continuous at a. Then f · g is contin-
uous at a because

lim
x→a

(fg)(x) = lim
x→a

f(x) · lim
x→a

g(x) = f(a) · g(a) = (fg)(a)

Reciprocal. Let g be continuous at a. Then 1
g is continuous at a where

g(a) ̸= 0 because

lim
x→a

(
1

g

)
(x) =

1

limx→a g(x)
=

1

g(a)
=

(
1

g

)
(a)

Slightly harder proof: composition

Let f, g ∈ R → R. Let g be continuous at a, and let f be continuous at g(a).
Then f ◦ g is continuous at a. Put differently, we want to show

lim
x→a

(f ◦ g)(x) = (f ◦ g)(a)

Unpacking the definitions, let ϵ > 0 be given. We want to show there exists
δ > 0 such that |x− a| < δ implies

|(f ◦ g)(x)− (f ◦ g)(a)|
= |f(g(x))− f(g(a))| < ϵ

By problem statement we have two continuities.

First, f is continuous at g(a), i.e. limX→g(a) f(X) = f(g(a)). Thus there exists
δ′ > 0 such that |X − g(a)| < δ′ implies |f(X)− f(g(a))| < ϵ.

Second, g is continuous at a, i.e. limx→a g(x) = g(a). Thus there exists δ > 0
such that |x−a| < δ implies |g(x)−g(a)| < ϵ. Since we can make ϵ be anything,
we can set it to δ′.

I.e. there exists δ > 0 such that |x−a| < δ implies |g(x)−g(a)| < δ′. Intuitively,
g(x) is close to g(a). But by the first continuity, any X close to g(a) implies

|f(X)− f(g(a))| < ϵ

Thus |f(g(x))− f(g(a))| < ϵ, as desired.
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4.3 Example: Stars over Babylon

Stars over Babylon is a modification of the Dirichlet function (see 3.1), defined
as follows:

f(x) =

{
0, x irrational, 0 < x < 1

1/q, x = p/q in lowest terms, 0 < x < 1.

Claim: for 0 < a < 1, limx→a f(x) = 0.

Proof. Let ϵ > 0 be given. We must find δ > 0 such that 0 < |x − a| < δ
implies |f(x)− 0| < ϵ. For any δ > 0, 0 < |x− a| < δ implies one of two cases
for all x: either x is irrational or it is rational.

If x is irrational, |f(x)− 0| = 0 < ϵ.

Otherwise, if x = p/q in the lowest terms is rational, f(x) = 1/q. Let n ∈ N
such that 1/n < ϵ. We will look for δ such that:

f

(
p

q

)
=

1

q
<

1

n
< ϵ

Observe that when q > n, f(pq ) =
1
q < 1

n . Thus the only rationals that could

result in f(pq ) ≥ 1/n are ones where q ≤ n:

A = {1
2
;

1

3
,
2

3
;

1

4
,
3

4
;

1

5
,
2

5
,
3

5
,
4

5
, . . . ,

1

n
, . . . ,

n− 1

n
}

This set has a finite length, and thus one p/q ∈ A is closest to a. Fix δ = |a−p/q|
(i.e. anything less than this distance). This guarantees 0 < |x− a| < δ implies
x /∈ A for all x, and thus f(x) < 1/n < ϵ for all x, as desired.

Claim: f(x) is continuous at all irrationals, discontinuous at all rationals.

Proof: we’ve just proven for 0 < a < 1, limx→a f(x) = 0. By definition f(x) is
zero for all irrationals, and nonzero for all rationals. Thus limx→a f(x) = f(x)
for all irrationals, and limx→a f(x) ̸= f(x) for all rationals.
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5 Complete ordered fields

5.1 Motivation

The twelve ordered field axioms are sufficient to define limits, continuity, and
prove all the theorems in the previous sections. Since the set Q of rational num-
bers is an ordered field4, rationals have been sufficient for the work we’ve done
so far. However, we are about to start proving slightly more sophisticated the-
orems about continous functions, and ordered fields will quickly start breaking
our intuitions.

For example, consider the function f(x) = x2 − 2 (a parabola shifted down two
units). It’s easy to see f is a continuous function, and thus our intuition is that
we should be able to draw it without “lifting the tip of the pencil off the sheet
of paper”. Upon reflection however, it becomes obvious that in the universe
limited to ordered fields this is impossible. f intersects the x-axis when x2 = 2,
but every high school student knows

√
2 /∈ Q (see 5.1 for proof). Thus there is

no x ∈ Q such that f(x) = 0. And since Q is an ordered field, it follows ordered
fields alone aren’t sufficient to resolve this problem.

The intermediate value theorem (see 6.1) formalizes the claim that a continuous
function segment that starts below the x-axis and ends above the x-axis inter-
sects the x-axis. But as we can see from the example above, this is not possible
to prove with ordered field axioms alone. So before we proceed with further
study of continuity, we need one more axiom called the completeness axiom,
which we introduce in this chapter.

Combined with the twelve ordered field axioms, the completeness axiom forms
complete ordered fields. These objects are sufficient to proceed with our study of
calculus. We will see that rational numbers Q are not a complete ordered field,
whereas real numbers R are.5 Thus from here R-valued functions will become
our primary object of study.

Aside: sqrt(2) is irrational

Suppose
√
2 ∈ Q. Then there exist a, b ∈ N such that

(
a
b

)2
= 2. Assume

a, b have no common divisor (since we can obviously keep simplifying until this
is the case). Observe that both a and b cannot be even, otherwise we could
simplify further.

Now we have a2 = 2b2. Thus a2 is even, a must be even6, and there exists
k ∈ N such that a = 2k. Then a2 = 4k2 = 2b2 so 2k2 = b2. Thus b2 is even and

4The proof is straightforward, so I’m not including it here.
5Proof that R is a complete ordered field requires construction of R, which doesn’t happen

in Spivak until the last chapters. Thus I will not be delving into that here and ask the reader
(i.e., currently myself) to take this on faith.

6Even numbers have even squares because (2k)2 = 4k2 = 2 · (2k2)
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so b is even. Since both a and b cannot be even, this is a contradiction. Thus√
2 /∈ Q as desired.

5.2 Least Upper Bound

Definition: b is an upper bound for S if s ≤ b for all s ∈ S.

For example:

• Any b ≥ 1 is an upper bound for S = {x : 0 ≤ x < 1}. E.g. 1, 2, 10 are all
upper bounds of S.

• By convention, every number is an upper bound for ∅.

• The set N of natural numbers has no natural upper bound. The proof
is easy. Suppose b ∈ N is an upper bound for N . But b + 1 ∈ N , and
b+ 1 > b, which is a contradiction. Thus b isn’t an upper bound for N .7

Definition: x is a least upper bound of A, if

1. x is an upper bound of A,

2. and if y is an upper bound of A, then x ≤ y.

A set can have only one least upper bound. The proof is easy. Suppose x and
x′ are both least upper bounds of S. Then x ≤ x′ and x′ ≤ x. Thus x = x′.
Consequently, we can use a convenient notation supA to denote the least upper
bound of A.

Obligatory examples:

• Let S = {x : 0 ≤ x < 1}. Then supS = 1.

• By convention, the empty set ∅ has no least upper bound.

5.3 Completeness axiom

We are now ready to state the completeness axiom.

Completeness [P13]: If A is a non-empty set of numbers that has an upper
bound, then it has a least upper bound.

Claim: rational numbers are not complete.
Proof: Let C = {x : x2 < 2 and x ∈ Q}. Suppose for contradiction rational
numbers are complete. Then there exists b ∈ Q such that b = supC. Observe
that

7We need to do a little more work to show N has no upper bound, natural or not. Be
patient! We will prove this by the end of the section.
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• b2 ̸= 2 as that would imply b =
√
2 and thus b /∈ Q.

• b2 ̸< 2 as there would exist some x ∈ C such that b2 < x2 < 2. Thus
b < x and b is not the upper bound.

Therefore b2 > 2. But this implies there exists some x ∈ Q such that 2 < x2 <
b2. Thus x is greater than every element in C, and x < b. So b is not the
least upper bound. We have a contradiction, therefore rational numbers are not
complete, as desired.

Claim: completeness cannot be derived from ordered fields.
Proof: Q is not complete and Q is an ordered field. Thus completeness is not
a property of ordered fields.

Claim: real numbers are complete.
Proof [deferred]: The completeness property can be derived from the con-
struction of real numbers R, which makes reals a complete ordered field.
The proof requires we study the actual construction of R, which Spivak leaves
until the last chapters. Thus for the moment the proof will be taken on faith.
In any case, it is better to build calculus upon abstract complete ordered fields
than upon concrete real numbers.

5.4 Consequences of completeness

N is not bounded above

We’ve shown N has no upper bound in N . Now we show N has no upper bound
in R.

Suppose for contradiction N has an upper bound. Since N ≠ ∅ then by com-
pleteness N has a least upper bound. Let α = supN . Then:

α ≥ n for all n ∈ N
=⇒ α ≥ n+ 1 for all n ∈ N since n+ 1 ∈ N if n ∈ N
=⇒ α− 1 ≥ n for all n ∈ N

Thus α − 1 is also an upper bound for N . This contradicts that α = supN .
Therefore N is not bounded above, as desired.

√
2 exists

We show
√
2 ∈ R. Let S = {y ∈ R : y2 < 2}. Obviously S is non-empty and

has an upper bound. Thus by completeness property it has a least upper bound.
Let x = supS. Note that 1 ∈ S and 2 is an upper bound of S. Thus 1 ≤ x ≤ 2.
We show x2 = 2 by showing x2 ̸< 2 and x2 ̸> 2.
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Case 1. Suppose for contradiction x2 < 2. Let 0 < ϵ < 1 be a small number.
Then

(x+ ϵ)
2
=x2 + 2ϵx+ ϵ2

≤ x2 + 4ϵ+ ϵ since x < 2 and ϵ < 1

= x2 + 5ϵ < 2 since x2 < 2 (by supposition), we can pick

a small enough ϵ to make this true

Thus there exists ϵ such that (x+ ϵ)
2
< 2. By definition of S it follows x+ϵ ∈ S,

which contradics that x is the least upper bound. Therefore x2 ̸< 2

Case 2. Suppose for contradiction x2 > 2. Let 0 < ϵ < 1 be a small number.
Then

(x− ϵ)
2
=x2 − 2ϵx+ ϵ2

≥ x2 − 2ϵx since ϵ2 > 0

≥ x2 − 4ϵ since x ≤ 2

> 2 since x2 > 2 (by supposition), we can pick

a small enough ϵ to make this true

Thus (x− ϵ)
2
> 2, which by definition of S implies x − ϵ > y for all y ∈ S.

So x − ϵ is an upper bound of S. We have a contradiction– since x − ϵ < x, it
follows x is not a least upper bound. Therefore x2 ̸> 2 as desired.

Since x2 ̸< 2 and x2 ̸> 2, it follows x2 = 2 as desired.

Archimedean property

Handwavy definition: the Archimedean property states that you can fill the
universe with tiny grains of sand.

Formal defition: let ϵ > 0 be small and let r > 0 be large. Then there exists
n ∈ N such that nϵ > r.

Proof: suppose for contradiction the property is false. Then there exist ϵ, r
such that for all n ∈ N , nϵ ≤ r. Therefore n ≤ r

ϵ . This implies N is bounded,
which a contradiction.

A useful special case is when r = 1. In this case the Archimedean property can
be restated as follows. Let ϵ > 0 be small. Then there exists n ∈ N such that
nϵ > 1. Put differently, there exists n ∈ N such that 1

n < ϵ.

A few more notes on the Archimedean property:

• Obviously the Archimedean property follows from completeness, as shown
above.

24



• The Archimedean property is true in Q and can be proven without being
assumed8.

• Completeness does not follow from the Archimedean property. The proof
is easy: the Archimedean property holds on Q, and we know Q is not
complete as shown above.

Density

Let x, y ∈ R. Then S is a dense subset of R if there is an element of S in
(x, y). Put differently, there is an element of S between any two points in R.

• Obviously R is a dense subset of itself (if x, y ∈ R then x+y
2 ∈ (x, y)).

• Integers are not a dense subset of R. E.g. there is no integer between 1.1
and 1.9.

• The set of positive numbers {x : x ∈ R, x > 0} is not a dense subset of R.
E.g. there is no positive number between −2 and −1.

Claim: the set of rational numbers Q is dense.
Proof: let x, y ∈ R be given. Suppose we can show there exists a rational in
(x, y) for 0 ≤ x < y. Then:

• Given x < y ≤ 0, there is a rational r in (−y,−x). So −r is in (x, y).

• Given x < 0 < y, there is a rational r in (0, y). So r is of course also in
(x, y).

Thus all we must do is prove there exists a rational in (x, y) for 0 ≤ x < y.

Let 0 ≤ x < y be given. By the Archimedean property there exists n ∈ N such
that 1

n < y − x. Because (a) N is unbounded and (b) N is well-ordered, there
exists the least integer m ∈ N such that m ≥ ny.

First, observe that

m− 1 < ny or m wouldn’t be the least integer m ≥ ny

=⇒ m− 1

n
< y

8Excluding the proof here, but it’s fairly simple
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Second, suppose for contradiction m−1
n ≤ x. Then

m− 1

n
≤ x

=⇒ m

n
− 1

n
≤ x

=⇒ − 1

n
≤ x− m

n

=⇒ 1

n
≥ m

n
− x

=⇒ 1

n
≥ y − x recall m ≥ ny, thus

m

n
≥ y

This is a contradiction, thus m−1
n > x.

Therefore m−1
n ∈ (x, y) as desired.

Claim: the set of irrational numbers R \Q is dense.
Proof: let x, y ∈ R be given. By density of the rationals there exists r ∈ Q
such that x√

2
< r < y√

2
. Multiplying each side by

√
2, we get x <

√
2r < y.

We know
√
2r is irrational. Thus there exists an irrational number between any

two numbers in R, and the set of irrationals R \Q is dense as desired.
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6 Continuity, Part II (On an Interval)

6.1 Intermediate Value Theorem

Theorem: if f is continuous on [a, b] and f(a) < 0 < f(b), then there exists
x ∈ [a, b] such that f(x) = 0.

Or intuitively, if f(a) is below zero and f(b) is above zero, f must cross the
x-axis somewhere.

Proof: intuitively, we will locate the smallest number x on the x-axis where
f(x) first crosses from negative to positive, and show that f(x) must be zero.

First, we define a set A that contains all inputs to f before f crosses from
negative to positive for the first time:

A = {x : a ≤ x ≤ b, and f is negative on the interval [a, x]}

We know A ̸= ∅ since a ∈ A, and b is an upper bound of A. Thus A has a least
upper bound α such that a ≤ α ≤ b. By nonzero neighborhood lemma (see
4.1) we know there is some interval around a on which f is negative, and some
interval around b on which f is positive. Thus we can further refine the bound
on α to a < α < b.

We now show f(α) = 0 by eliminating the possibilities f(α) < 0 and f(α) > 0.

Case 1. Suppose for contradiction f(α) < 0. By nonzero neighborhood lemma
there exists δ > 0 such |x − α| < δ implies f(x) < 0 for all x. But that means
numbers in (α− δ, α+ δ) are in A. E.g. (α+ δ/2) ∈ A. Since α+ δ/2 > α, α is
not an upper bound of A, and is thus not the least upper bound.

Case 2. Suppose for contradiction f(α) > 0. By nonzero neighborhood lemma
there exists δ > 0 such |x − α| < δ implies f(x) > 0 for all x. But that means
numbers in (α − δ, α + δ) are not in A, and there exist many upper bounds of
A less than α. E.g. α− δ/2 is an upper bound of A, and since α− δ/2 < α, α
is not the least upper bound.

Both cases lead to contradiction, therefore f(α) = 0. QED.

IVT generalization

The intermediate value theorem is usually presented in a more general way. If
f is continuous on [a, b] and f(a) < c < f(b) or f(a) > c > f(b) then there is
some x in [a, b] such that f(x) = c.

Intuitively, f takes on any value between f(a) and f(b) at some point in the
interval [a, b].
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Proof. This trivially follows from the the theorem as initially stated. There
are two cases:

Case 1: f(a) < c < f(b). Let g = f − c. Then g is continuous and g(a) <
0 < g(b). Thus there is some x in [a, b] such that g(x) = 0. But that means
f(x) = c.

Case 2: f(a) > c > f(b). Observe that −f is continuous on [a, b] and −f(a) <
−c < −f(b). By case 1 there is some x in [a, b] such that −f(x) = −c, which
means f(x) = c.

QED.

6.2 Boundedness theorem

The boundedness theorem states that if f is continuous on [a, b], then f is
bounded above (i.e. f lies below some line). Before we prove this, we first prove
a simple lemma.

Bounded neighborhood lemma: if f is continuous at a, then there is δ > 0
such that f is bounded above on the interval (a− δ, a+ δ).

Intuitively, if f is continuous at a then there is some interval around a on which
f is bounded above.

Proof: The proof is trivial. Inlining the definition of continuity, for any ϵ > 0
there exists δ > 0 such that |x− a| < δ implies |f(x)− f(a)| < ϵ for all x. Thus
f(a) + ϵ is the upper bound on f within (a− δ, a+ δ), as desired.

(Note that we can pick any ϵ to concretize the proof, for example ϵ = 1.)

Boundedness theorem: if f is continuous on [a, b], then f is bounded above
on [a, b]. I.e. there is some numbers N such that f(x) ≤ N for all x in [a, b].

Proof: intuitively, we will try to find the smallest number x on the x-axis where
f(x) becomes unbounded above, and discover that there is no such number in
[a, b].

First, we define a set A that contains all inputs to f before f stops being
bounded above:

A = {x : a ≤ x ≤ b, and f is bounded above on [a, x]}

By bounded neighborhood lemma f is bounded above in the neighborhood of
a9. Thus we know A ̸= ∅ because a ∈ A. Further, b is an upper bound of A.
Thus A has a least upper bound.

9We are being sloppy here as we actually need a left-sided and right-sided version of the
bounded neighborhood lemma. I am papering over this for now, but will need to fix at some
point by giving proper one sided proofs
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Let α = supA. To prove the boundedness theorem we must prove two claims:

1. α = b, i.e. f does not ever stop being bounded above before b.

2. (α = b) ∈ A, as supA is not necessarily a member of A.

First, we prove α = b. Suppose for contradiction α < b. By bounded neighbor-
hood lemma there is some δ > 0 such that f is bounded above in (α− δ, α+ δ).
But that means there are many upper bounds greater than α, for example
α+ δ/2. Thus α is not the least upper bound. We have a contradiction, and so
α = b.

Second, we prove (α = b) ∈ A. By bounded neighborhood lemma there is
some δ > 0 such that f is bounded above in (b − δ, b]. Pick any x0 such that
b− δ < x0 < b. Then:

• x0 < b = α. Since α is the least upper bound it follows x0 ∈ A. Thus f is
bounded above on [a, x0].

• f is bounded above on [x0, b].

Since f is bounded above on [a, x0] and on [x0, b], it follows f is bounded above
on [a, b] as desired. QED.

Boundedness theorem generalization

The boundedness theorem is usually presented slightly more generally: it proves
f is bounded above and below. We already proved the former. Put more
formally, the latter states:

If f is continuous on [a, b], then f is bounded below on [a, b]. I.e. there is some
numbers N such that f(x) ≥ N for all x in [a, b].

Proof: observe that −f is continuous on [a, b]. By claim 2 there exists a number
M such that −f(x) ≤ M for all x in [a, b]. But that means f(x) ≥ −M for all
x in [a, b]. QED.

6.3 Extreme Value Theorem

The extreme value theorem states that is f is continuous on [a, b], then f attains
its maximum on [a, b]. To see why we need the extreme value theorem, consider
f = 1

x . f is discontinuous at 0 and approaches infinity. Thus f does not attain
a maximum value on the interval [0, 1].

Extreme value theorem: If f is continuous on [a, b], then there is some
number y in [a, b] such that f(y) ≥ f(x) for all x in [a, b].

Proof: Let A be the set of f ’s outputs on [a, b]:

A = {f(x) : x in [a, b]}
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Since [a, b] isn’t empty, A ̸= ∅. By boundedness theorem, f is bounded on [a, b],
and so A has an upper bound. Thus A has a least upper bound. Let α = supA.
By definition α ≥ f(x) for x in [a, b]. Thus it suffices to show α ∈ A (i.e.
α = f(y) for some y in [a, b]).

Let’s consider a function g10:

g =
1

α− f(x)
, x in [a, b]

Suppose for contradiction α /∈ A. Then the denominator is never zero and g is
continuous. Therefore:

1

α− f(x)
< M by boundedness theorem

for some bound M

=⇒ α− f(x) >
1

M
take reciprocal

=⇒ −f(x) >
1

M
− α

=⇒ f(x) < α− 1

M
times −1

But this contradicts that α is the least upper bound. Thus α ∈ A as desired.
QED.

EVT generalization

The extreme value theorem is usually presented slightly more generally: a con-
tinuous f attains both its maximum and its minimum. We already proved the
former. Put more formally, the latter states:

If f is continuous on [a, b], then there is some number y in [a, b] such that
f(y) ≤ f(x) for all x in [a, b].

Proof: Observe that −f is continous on [a, b]. By claim 3 there is some y in [a, b]
such that −f(y) ≥ −f(x) for all x in [a, b]. But that means that f(y) ≤ f(x)
for all x in [a, b]. QED.

6.4 IVT and EVT consequences

Claim 1a: Every positive number has a square root. I.e. if α > 0, then there
is some number x such that x2 = α.

Proof: Consider the function f(x) = x2. If f takes on the value of α as its
output, then x =

√
α is the input (i.e. x2 = α). Thus all we must show is that

f takes on the value of α.

10g is a bit of a rabbit pulled out of a magic hat, but to quote a great British statesman,
them’s the breaks
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We can do it as follows. Show there exist a, b such that f(a) < α < f(b). Since f
is continuous, by intermediate value theorem there exists x such that f(x) = α.
So, let’s find a and b:

• First, find a such that f(a) < α. Observe that f(0) = 0 < α, thus fix
a = 0.

• Second, find b such that α < f(b).

– If α < 1 then f(1) = 1 > α. Thus fix b = 1.

– If α > 1 then f(α) = α2 > α. Thus fix b = α.

By intermediate value theorem, there is some x in [0, b] such that f(x) = α.
QED.

Claim 1b: Every positive number has an nth root. I.e. if α > 0, then there is
some number x such that xn = α.

Proof: We can use the exact same argument as 1a, just consider f(x) = xn.

Claim 1c: Let n be odd. Then every number has an nth root. I.e. there is
some number x such that xn = α for all α.

Proof: This is also easy:

• Case α > 0. By claim 2b, there is an x such that xn = α.

• Case α < 0. By claim 2b, there is an x such that xn = −α. Then
(−x)n = α.

QED.

Claim 2: If n is odd, then any equation of the form

xn + an−1x
n−1 + . . .+ a0 = 0

has a root.

Proof: Let f(x) = xn+ an−1x
n−1+ . . .+ a0. Here is an intuitive outline of the

proof:

1. We will show that f must take on negative and positive values. Thus by
the intermediate value theorem, there exists some x such that f(x) = 0.

2. To do that we will show that as |x| gets large, xn completely dominates
other terms. (This is obvious if you consider Big-Oh of each term.)

3. Since n is odd, xn takes on a negative value when x is negative, and a
positive value when x is positive. And since xn dominates other terms,
when x is sufficiently large, f takes on both negative and positive values.
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We must find a way to bound the magnitude of an−1x
n−1 + . . . + a0 to show

that for large enough x, it’s smaller than the magnitude of xn. This way we
guarantee f(x) has the same sign as xn. This is trivial to do by adopting Big-Oh
notation, but both math books I looked at do it the old-fashioned way, so we
will too.

Let’s start with some obvious transformations we can make:

|an−1x
n−1 + . . .+ a0| ≤ |an−1x

n−1|+ . . .+ |a0| by triangle inequality

= |an−1||xn−1|+ . . .+ |a0| in general |ab| = |a||b|

If we only consider behavior of f on large x (i.e. when |x| > 1), we can further
bound the expression. Observe that when |x| > 1 then xn−1 > xn−2 > . . . >
x > 1. Therefore:

|an−1x
n−1 + . . .+ a0| ≤ |an−1||xn−1|+ . . .+ |a0|

≤ |an−1||xn−1|+ . . .+ |a0||xn−1|
= xn−1(|an−1|+ . . .+ |a0|)

Let M = |an−1|+ . . .+ |a0|+1, i.e. a bound on the sum of the coefficients, plus
a little extra to ensure M > 1. Then

|an−1x
n−1 + . . .+ a0| ≤ xn−1(|an−1|+ . . .+ |a0|)

< M |xn−1|

Given this bound it follows that for all |x| > 1:

xn −M |xn−1| < xn + (an−1x
n−1 + . . .+ a0) < xn +M |xn−1|

or put differently:

xn −M |xn−1| < f(x) < xn +M |xn−1|

We will now find x1 and x2 such that f(x1) < 0 and f(x2) > 0. Let x1 = −2M
(note that x1 satisfies our condition |x1| > 1 since M > 1). Then for all x ≤ x1:

f(x) < xn +M |xn−1|
= xn +Mxn−1 n is odd, thus n− 1 is even, thus xn−1 > 0

= xn−1(x+M) factor out xn−1

≤ −2n−1Mn substitute −2M and simplify

< 0
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Similarly, let x2 = 2M . Then for all x ≥ x2:

f(x) > xn −M |xn−1|
= xn −Mxn−1

= xn−1(x−M)

≥ 2n−1Mn

> 0

QED.

Claim 3: If n is even and f(x) = xn + an−1x
n−1 + . . . + a0, then there is a

number y such that f(y) ≤ f(x) for all x.

Intuitively, even degree polynomials achieve their minimum on R because when
you zoom out enough they are U-shaped (consider the graph f(x) = x2 as a
simple example).

Proof: It’s easy to intuitively see why the claim makes sense. xn dominates
the rest of the terms when x is very large. Since n is even, xn > 0. Thus on
very large |x| the graph shoots up (i.e. it has a U shape).

Here is the outline for our proof:

1. Observe that f(0) = a0.

2. We will prove f is U-shaped by proving there exist two points:

• x0 < 0 such that f(x) > a0 on (−∞, x0].

• x1 > 0 such that f(x) > a0 on [x1,∞].

3. By extreme value theorem f achieves a minimum m on [x0, x1]. Note
m ≤ a0 (otherwise it wouldn’t be a minimum).

4. Thus f achieves a minimum m on R, as we’ve shown that outside [x0, x1],
f(x) > a0 (and thus f(x) > m) for all x.

All we must do now to complete the proof is find x0 < 0 < x1. Let M =
|an−1|+ . . .+ |a0|+ 1, i.e. a bound on the sum of the coefficients, plus a little
extra to ensure M > 1. In Claim 2 we discovered that for |x| > 1

xn −M |xn−1| < f(x) < xn +M |xn−1|

Let x1 = −2M . Note that x1 satisfies our condition |x1| > 1 since M > 1. Then
for all x < x1:

f(x) > xn −M |xn−1|
= xn +Mxn−1 x is negative, and n− 1 is odd

= xn−1(x+M)

≥ 2n−1Mn substitute −2M and simplify
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Similarly let x2 = 2M . Then for all x > x1:

f(x) > xn −M |xn−1|
= xn +Mxn−1 x is positive

= xn−1(x+M)

≥ 2n−1Mn substitute 2M and simplify

Since M > 1 we have

2n−1Mn ≥ M ≥ |an + 1| ≥ an + 1 > an

Therefore for all x < x1 and x > x2, f(x) > an as desired.

Claim 4: Consider the equation

xn + an−1x
n−1 + . . .+ a0 = c

and suppose n is even. Then there is a number m such that the equation has a
solution for c ≥ m and has no solution for c < m.

Proof: In claim 3 we saw that even degree polynomials achieve a minimum.
Let that be m. There are three cases:

• If c < m there is no solution, as the polynomial doesn’t take on values less
than m.

• If c = m there is a solution, as the polynomial obviously takes on the value
m (by claim 3).

• Suppose c > m. Let y, z ∈ R such that f(y) = m and z > y, f(z) > c.11

Then f(y) = m < c < f(z). By intermediate value theorem there is a
number k in [y, z] such that f(k) = c.

QED.

6.5 Uniform continuity

TODO (skipping until it comes up in Spivak or I hit it in Galvin’s notes)

11Technically we have to prove such a z exists, but somehow Spivak rolls right past this.
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7 Derivatives, Part I (Fundamentals)

7.1 Formal definitions

Definition: the derivative at a of a function f , denoted f ′(a), is defined as:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

There are three intuitions to convey about the derivative:

• Algebraic interpretation. The derivative tells how f(a + h), the value of
f as small distance from a, changes relative to f(a) as h becomes very
small.

• Geometric interpretation. Draw a line through points (a, f(a)) and (a +
h, f(a+ h)) for some small h. Then make h “infinitely small”. Our f ′(a)
is the slope of that line. The tagent line is a linear approximation of f
near a.

• Physics interpretation. Suppose f(t) maps time to position of a car on a
road (or of any object on a straight line). Suppose you want to know the
average velocity between any two points in time t1, t2. If h = t2 − t1 then

the average velocity is f(t1+h)−f(t1)
h . This is the quotient of the deriva-

tive! Only with h “reduced to an infinitesimal”, producing instantanious
velocity.

Definition: f is called differentiable at a if the limit f ′(a) exists.

The notation f ′(a) suggests f ′ is a function. Indeed, we define f ′ as follows.
Its domain is the set of all numbers a where f is differentiable, and its value at
such a point a is the limit above. Not surprisingly, we call f ′ the derivative of
f . Note that the domain of f ′ could be much smaller than the domain of f .

We can apply the definition of the derivative to f ′ yielding the second derivative
(f ′)′, denoted f ′′ or f (2). The domain of f ′′ is all points a such that f ′ is
differentiable at a. If f ′′(a) exists, we say f is twice differentiable at a.

7.2 Differentiability implies continuity

We are about to prove an important theorem– that differentiability implies
continuity. To do that, we begin with a convenient (simple) lemma.

Lemma: limx→a f(x) is equivalent to limh→0 f(a+ h).
Proof. Let x = a+ h. Then

lim
h→0

f(a+ h)

⇐⇒ lim
x−a→0

f(x)

⇐⇒ lim
x→a

f(x)
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Note that the last implication is true because

0 < |(x− a)− 0| < δ ⇐⇒ 0 < |x− a| < δ

QED.

Theorem: if f is differentiable at a, then f is continuous at a.
Proof. We must show that:

lim
x→a

f(x) = f(a)

We begin as follows:

lim
h→0

[f(a+ h)− f(a)] = lim
h→0

f(a+ h)− f(a)

h
· h

= lim
h→0

f(a+ h)− f(a)

h
· lim
h→0

h

= lim
h→0

f(a+ h)− f(a)

h
· 0

= 0

It follows that

lim
h→0

[f(a+ h)− f(a)] = 0

=⇒ lim
h→0

f(a+ h)− lim
h→0

f(a) = 0

=⇒ lim
h→0

f(a+ h) = lim
h→0

f(a) = f(a)

7.3 Low-level proofs

In the next chapter we prove theorems that make finding derivatives for many
classes of functions easy. But for now we show four low-level derivations di-
rectly from the definition. Here we will be looking at constant functions, linear
functions, quadratic, and cubic functions.

Constant functions

Let f(x) = c. Then:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

c− c

h
= 0

Thus f is differentiable at a for every number a, and f ′(a) = 0.
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Linear functions

Let f(x) = cx+ d. Then:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

c(a+ h) + d− (ca+ d)

h

= lim
h→0

ch

h
= c

Thus f is differentiable at a for every number a, and f ′(a) = c.

Quadratic functions

Let f(x) = x2. Then:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

(a+ h)2 − a2

h

= lim
h→0

a2 + 2ah+ h2 − a2

h

= lim
h→0

2ah+ h2

h

= lim
h→0

2a+ h

= lim
h→0

2a

Thus f is differentiable at a for every number a, and f ′(a) = 2a.

Cubic functions

Let f(x) = x3. Then:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

(a+ h)3 − a3

h

= lim
h→0

a3 + 3a2h+ 3ah2 + h3 − a3

h

= lim
h→0

3a2h+ 3ah2 + h3

h

= lim
h→0

3a2 + 3ah+ h2

= 3a2

Thus f is differentiable at a for every number a, and f ′(a) = 3a2.
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7.4 Non-differentiability

Continuous functions are “nice”. Functions that are differentiable everywhere
are “nicer”. Functions that are differentiable everywhere and whose first deriva-
tive is differentiable everywhere are nicer still. Thus to fully understand the
derivative we must understand examples where it does not exist.

We now turn our attention to functions that aren’t differentiable at some points
a. We first look at four simple examples where there isn’t everywhere a first
derivative. We then turn our attention to a more subtle example– a function
that’s differentiable in the first, but not everywhere in the second derivative.

First derivative

Example 1
Let f(x) = |x|. Consider f ′(0):

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

|h|
h

Observe that limh→0+
|h|
h = 1 and limh→0−

|h|
h = −1. This limh→0

|h|
h does not

exist, and f is not differentiable at 0. Note that f is differentiable at every other
point: f ′(a) = −1 for a < 0 and f ′(a) = −1 for a > 0.

Example 2
Let f be defined as follows:

f(x) =

{
x2, x ≤ 0

x, x ≥ 0

Now consider f ′(0):

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

f(h)

h

Observe that
f(h)

h
=

{
h2

h = h, h ≤ 0
h
h = 1, h ≥ 0

Therefore limh→0−
f(h)
h = 0 and limh→0+

f(h)
h = 1. Thus limh→0

f(h)
h does not

exist, and f is not differentiable at 0.

Example 3
Let f(x) =

√
|x|. Consider f ′(0):

f ′(0) = lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

√
|h|
h
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Observe that √
|h|
h

=

{√
−h
h = − 1√

−h
, h < 0

√
h
h = 1√

h
, h > 0

Therefore limh→0+

√
|h|
h = ∞ and limh→0−

√
|h|
h = −∞. Thus limh→0

√
|h|
h does

not exist, and f is not differentiable at 0.

Example 4

Let f(x) = 3
√
x. Here

3√
h

h plays out as follows:

3
√
h

h
=

h1/3

h
=

1

h2/3
=

1

( 3
√
h)

2

This expression becomes arbitrarily large as h goes to 0, i.e. limh→0
1

(
3√
h)

2 = ∞.

Thus f is not differentiable at zero (or put differently, the tagent line to f at 0
is vertical).

Second derivative

We now come to our more subtle example– a function that’s differentiable in
the first but not everywhere in the second derivative:

Example 1
Let

f(x) =

{
x2, x ≥ 0

−x2, x ≤ 0

As we’ve seen in the quadratic functions example above, dx2

dx = 2x. By very

similar logic, d(−x2)
dx = −2x. Thus f ′(a) = 2a if a ≥ 0, and f ′(a) = −2a if

a ≤ 0. Or, put differently, f ′(x) = 2|x|.

So, f ′(0) = 0. But what about f ′′(0)? We’ve already seen that g(x) = |x| is
not differentiable, and by very similar logical, f ′′(0) does not exist! So even a
“smooth looking” function may not have a second derivative– a fact that implies
existence of a second derivative is a strong critereon for a function to satisfy.

7.5 Tangent lines

Spivak now handles a question—- how many times does a tagent line to f at
a intersect the graph of f? He doesn’t yet motivate the question, though I
suspect he will at a later time (at which point I will come back and make a note
of it here). To answer this question we must first find the linear equation that
describes the tagent line, which we will now do. We’ll then address the question
of intersection for quadratic and cubic functions.
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Point-slope form

The slope m of a line is determined by

m =
y − y1
x− x1

For a function f differentiable at a, the slope of a tagent line at a is m = f ′(a).
We also know one of the points on the line– (a, f(a)) (the point where the
tangent line intersects with f). Plugging that in we get

f ′(a) =
y − f(a)

x− a

=⇒ y − f(a) = f ′(a)(x− a)

=⇒ y = f ′(a)(x− a) + f(a)

This gives us a linear equation for the tangent line– a linear approximation of
f near a.

Intersections

Quadratic functions. For f(x) = x2 we’ve seen that f ′(a) = 2a. Plugging
that into y = f ′(a)(x− a) + f(a) we get:

y = 2a(x− a) + a2

= 2ax− a2

Let g(x) = 2ax− a2. We can now solve for all x such that f(x) = g(x):

f(x) = g(x)

=⇒ x2 = 2ax− a2

=⇒ x2 − 2ax+ a2 = 0

=⇒ (x− a)2 = 0

=⇒ x = a

So the only solution is x = a, therefore the only point of intersection is (a, f(a) =
g(a) = a2).

Cubic functions. For f(x) = x3 we’ve seen that f ′(a) = 3a2. Plugging that
into y = f ′(a)(x− a) + f(a) we get:

y = 3a2(x− a) + a3

= 3a2x− 2a3

Let g(x) = 3a2x− 2a3. We can now solve for all x such that f(x) = g(x):

f(x) = g(x)

x3 = 3a2x− 2a3

x3 − 3a2x+ 2a3 = 0
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Factoring this in Mathematica, we get

(a− x)2(2a+ x) = 0

Thus one of the solutions is x = a (we already knew (a, a3) is a point of
intersection– we explicitly constructed the tangent line at this point). The other
solution is x = −2a, and thus the other point of intersection is (−2a,−8a3).
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8 Trigonometric functions

Spivak covers variations of trigonometric functions as he goes through the book.
I initially found it distracting– it’s hard enough to understand ϵ− δ limits; it’s
harder still if you’re also trying to learn trig as you go. But trig is important,
and sooner or later it’s time to understand it. Because trig examples are crucial
in understanding the chain rule in the next chapter, that time is now. Here
I introduce the basics of trigonometric functions, and then cover everything
trig-related from Spivak’s early chapters that I ignored until now.

8.1 Definitions

Let P be a point on a unit circle x2+y2 = 1. Let θ be the length of the arc from
(1, 0) to P , measured counterclockwise along the circle. Then the coordinates
of P are (cos θ, sin θ).12

P

θ

0, 2ππ

π /2

3π /2

The measure of angles by the length of the arc is in units called radians. Recall
the circumference of a circle is C = 2πr, and so the circumference of a unit
circle is 2π. Thus π represents a 180◦ angle. Some common angles in radians
are 2π, π, π

2 ,
π
3 ,

π
4 ,

π
6 , and

3π
2 . To convert these to degrees simply replace π with

180, and compute the fraction.

It should be self-evident that adding 2π to an angle results in the angle itself;
and that adding π

2 to an angle shifts it by 90◦. Further:

(cos 0, sin 0) = (1, 0) and (cos
π

2
, sin

π

2
) = (0, 1)

12The order is easy to remember– it’s alphabetical.
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8.2 Plotting

It is not too difficult to plot trigonometric functions. Consider some properties
of cosine we’ve already seen (or can easily deduce): cos 0 = 1, cos π

2 = 0,
cosπ = −1. We’ve also seen that cos (x+ 2π) = cosx. The x-axis below covers
[−3π, 3π] (i.e. a total length of 6π). Since cosine repeats every 2π, we should
expect the graph to repeat thrice. And this is exactly what we see.

-3π -2π -1π 1π 2π 3π

-1.0

-0.5

0.5

1.0

We can easily increase the frequency by plotting y = cos cx. Here we double
the frequency with c = 2:

-3π -2π -1π 1π 2π 3π

-1.0

-0.5

0.5

1.0
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8.3 Limits

Claim 1a: Let f(x) = x sin 1
x . Then limx→0 f(x) = 0.

Proof. Let ϵ > 0 be given. We must show 0 < |x−0| < δ implies |f(x)−0| < ϵ.
This is easy if you recall the co-domain of sin is [−1, 1]. This implies:∣∣∣∣x sin 1

x

∣∣∣∣ ≤ |x|

Thus fixing |x| < ϵ implies
∣∣x sin 1

x

∣∣ < ϵ as desired.

—

Claim 1b: Let f(x) = x2 sin 1
x . Then limx→0 f(x) = 0.

Proof. By the same reasoning as above,
∣∣x2 sin 1

x

∣∣ ≤ x2. Thus fixing |x| <
√
ϵ

implies
∣∣x2 sin 1

x

∣∣ < ϵ as desired.

—

Claim 1c: Let f(x) =
√

|x| sin 1
x . Then limx→0 f(x) = 0.

Proof. By the same reasoning as above,
∣∣∣√|x| sin 1

x

∣∣∣ ≤
√

|x|. Thus fixing

|x| < ϵ2 implies
∣∣∣√|x| sin 1

x

∣∣∣ ≤ ϵ as desired.

—

Claim 2: Let f(x) = sin 1
x . Then limx→0 f(x) does not exist.

Proof. Let ϵ = 1
2 . For any δ there exists x = 1

π/2+2π·n < δ. Observe that

f(x) = 1 > ϵ. Thus limx→0 f(x) does not exist as desired.

—

Claim 3: Let f(x) = sin 1
x = 0. Then limx→∞ f(x) = 0.

Proof. Spivak states this without proof. The crux is that | sin t| < |t| for all real
t (which we cannot prove until sin is defined later). But using this inequality
the proof of the broader claim is simple.

Let ϵ > 0 be given. We must show there exists N such that for all x > N ,
|f(x)| < ϵ. Since

∣∣sin 1
x

∣∣ < ∣∣ 1
x

∣∣, it suffices to ensure 1
x < ϵ, or x > 1

ϵ .

8.4 Continuity

Claim 1: f(x) = sin 1
x , g(x) = x sin 1

x are not continuous at 0.
Proof. Neither function is defined at 0, and thus cannot be continuous at 0.

—
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Claim 2: Let

G(x) =

{
x sin 1

x , x ̸= 0

0, x = 0

Then G is continuous at 0.

Proof. This is easy. We saw that limx→0 x sin
1
x = 0, and G(0) = 0. Thus

limx→0 x sin
1
x = G(0), and thus G is continuous at 0.

—

Claim 3: G is continuous at all a.
Proof. We already saw that G is continuous at 0 in claim 2. By using continuity
theorems (and assuming sin is continuous), it’s easy to see x sin 1

x is continuous
for all x ̸= 0. Thus f is continuous for all a.

—

Claim 4: Let

F (x) =

{
sin 1

x , x ̸= 0

a, x = 0

Then F is not continuous at 0, for any choice of a.

Proof. We saw that limx→0 x sin
1
x does not exist, thus F cannot be continuous

at 0.
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9 Derivatives, Part IIa (Differentiation)

9.1 Basic proofs

We now prove theorems that make differentiation of a large class of functions
easy.

Theorem 1. If f(x) = c then f ′(a) = 0 for all a.

Intuitively derivatives measure the rate of change. A constant function doesn’t
change, thus the derivative is zero.

Proof: we already proved this in the previous chapter.

—

Theorem 2. If f(x) = x then f ′(a) = 1 for all a.

Intuitively f(x) grows at exactly the same rate as x, thus the derivative is 1.

Proof:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

a+ h− a

h
= 1

—

Theorem 3. If f, g are differentiable at a, then (f + g)′(a) = f ′(a) + g′(a).

Examples:

• You have two functions, each modeling growth of some bank account. You
want to understand the rate of growth of both accounts.

• You have two different assembly lines producing the same product. c1(x)
and c2(x) model the cost of producing x units on each assembly line. You
want to understand total cost changes as production across both assembly
lines increases.

Proof:

(f + g)′(a) = lim
h→0

(f + g)(a+ h)− (f + g)(a)

h

= lim
h→0

f(a+ h) + g(a+ h)− f(a)− g(a)

h

= lim
h→0

f(a+ h)− f(a)

h
+ lim

h→0

g(a+ h)− g(a)

h

= f ′(a) + g′(a)

—
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Theorem 3a. If f1, . . . , fn are differentiable at a, then:

f1 + . . .+ fn)
′(a) = f ′

1(a) + . . .+ f ′
n(a)

Proof. This is a fairly straightforward proof by induction. Skipping it here as
I’ve already spent enough time on this chapter.

—

Theorem 4. If f, g are differentiable at a, then

(f · g)′(a) = f ′(a) · g(a) + f(a) · g′(a)

Examples:

• Let r1(t), r2(t) model the length of each side of a rectangle over time. You
want to understand the change in area at time t.

Proof:

(f · g)′(a) = = lim
h→0

(f · g)(a+ h)− (f · g)(a)
h

= lim
h→0

f(a+ h)g(a+ h)− f(a)g(a)

h

= lim
h→0

f(a+ h)g(a+ h)− f(a)g(a) + f(a+ h)g(a)− f(a+ h)g(a)

h

= lim
h→0

f(a+ h)(g(a+ h)− g(a)) + g(a)(f(a+ h)− f(a))

h

= lim
h→0

(
f(a+ h)

g(a+ h)− g(a)

h
+ g(a)

f(a+ h)− f(a)

h

)
= lim

h→0
f(a+ h) · lim

h→0

g(a+ h)− g(a)

h
+ lim

h→0
g(a) · lim

h→0

f(a+ h)− f(a)

h

= lim
h→0

f(a+ h) · g′(a) + g(a) · f ′(a)

Recall from 7.2 that if f is differentiable at a, then limh→0 f(a + h) = f(a).
Thus

(f · g)′(a) = f(a) · g′(a) + g(a) · f ′(a)

—

Theorem 4a. If f1, . . . , fn are differentiable at a, then:

f1 · . . . · fn)′(a) =
n∑

i=1

f1(a) · f ′
i(a) · fn(a)

Proof. This is a fairly straightforward proof by induction. Skipping it here as
I’ve already spent enough time on this chapter.
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—

Theorem 5. If g(x) = cf(x) then g′(a) = c · f ′(a).

Examples:

• Let h be a height of a rectangle that’s constant, and let b(t) model the
length of the base of a rectangle over time. You want to understand the
change in area at time t.

Proof: Let h(x) = c so g = h · f . Then by theorem 4:

g′(x) = h′(x)f(x) + f ′(x)g(x)

= 0 · f(x) + cf ′(x)

= cf ′(x)

—

Theorems 1-5 imply:

(−f)′(a) = (−1 · f)′(a) = −f ′(a)

and

(f − g)′(a) = (f + (−g))′(a) = f ′(a) + (−g)′(a) = f ′(a)− g′(a)

—

Theorem 6. If f(x) = xn for n ∈ N , then f ′(a) = nan−1 for all a.

Examples:

• Let s(t) model the length of the side of a cube over time. You want to
understand the change in volume at time t.

Proof. We prove this by induction. For n = 1, f ′(a) = 1 by theorem 2.

Assume if f(x) = xn then f ′(a) = nan−1 for all a.

Let I(x) = x and let g(x) = xn+1 = xxn. Then g(x) = I(x) · f(x), i.e. g = I · f .
By theorem 4:

g′(a) = (I · f)′(a)
= I ′(a)f(a) + I(a)f ′(a)

= 1 · an + a · nan−1

= an + nan

= an(1 + n)

= (n+ 1)an
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—

Theorem 6b. If f(x) = xn for n < 0, then f ′(a) = nan−1 for all a. (In other
words, we extend theorem 6 to negative exponents.)

Proof. We use theorem 7 below (putting 6b here for learning convenience).

f ′(a) =

(
1

a−n

)′

=
nx−n−1

x−2n

= nxn−1

—

Theorem 7. If g is differentiable at a and g(a) ̸= 0, then(
1

g

)′

(a) =
−g′(a)

[g(a)]
2

Examples:

• Let i(d) = 1
d2 model the intensity of light, which is inversely proportional

to the square of the distance from the source. You want to know how
intensity changes with distance.

Proof. We will prove this by using the derivative definition. However, we must

first show
(

1
g

)
(a+ h) is defined for sufficiently small h. This is easy.

Since g is differentiable at a it is continuous at a. Thus by nonzero neighborhood
lemma (see 4.1) there exists δ > 0 such that |h| < δ implies g(a+ h) ̸= 0 for all

h. Thus
(

1
g

)
(a+ h) is defined for sufficiently small h.

We are now ready to prove the core of the theorem.

lim
h→0

(
1
g

)
(a+ h)−

(
1
g

)
(a)

h
= lim

h→0

(
1

g(a+ h)
− 1

g(a)

)
/h

= lim
h→0

(
g(a)− g(a+ h)

g(a) · g(a+ h)

)
/h

= lim
h→0

g(a)− g(a+ h)

h · g(a) · g(a+ h)

= lim
h→0

−[g(a+ h)− g(a)]

h
· 1

g(a) · g(a+ h)

= lim
h→0

−[g(a+ h)− g(a)]

h
· lim
h→0

1

g(a) · g(a+ h)
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Recall from 7.2 that if f is differentiable at a, then limh→0 f(a + h) = f(a).
Thus:

lim
h→0

−[g(a+ h)− g(a)]

h
· lim
h→0

1

g(a) · g(a+ h)
= −g′(a) · 1

[g(a)]2

as desired.

—

Theorem 8. If f, g are differentiable at a and g(a) ̸= 0, then(
f

g

)′

(a) =
g(a) · f ′(a)− f(a) · g′(a)

[g(a)]2

Examples:

• Let e(t), s(t) model the number of engineers and sales people at a company
over time. You want to understand the change in the ratio between the
two.

Proof. (
f

g

)′

(a) =

(
f · 1

g

)′

(a)

= f(a) ·
(
1

g

)′

(a) + f ′(a) ·
(
1

g

)
(a)

=
−g′(a) · f(a)

[g(a)]2
+

f ′(a)

g(a)

=
−g′(a) · f(a) · g(a) + f ′(a) · [g(a)]2

[g(a)]3

=
f ′(a) · g(a)− g′(a) · f(a)

[g(a)]2

9.2 Chain rule

The derivative of composed functions is considerably more complicated, and so
deserves its own section. We’ll prove this in two stages. First, we’ll attempt a
proof with a few false starts that will point us in the direction of a real proof.
Once the direction becomes clear, we’ll abandon our first draft and write a clean
proof from scratch.

Theorem 9 (the chain rule). If g is differentiable at a, and f is differentiable
at g(a), then

(f ◦ g)′(a) = f ′(g(a)) · g′(a)
Examples:
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• Let a(t) model altitude of a rocket over time, and let p(a) model air
pressure at a particular altitude. You want to know how air pressure
changes over time.

Proof, first draft.

As usual, we start with the definition of the derivative:

(f ◦ g)′(a) = lim
h→0

(f ◦ g)(a+ h)− (f ◦ g)(a)
h

= lim
h→0

f(g(a+ h))− f(g(a))

h

= lim
h→0

(
f(g(a+ h))− f(g(a))

g(a+ h)− g(a)
· g(a+ h)− g(a)

h

)
= lim

h→0

f(g(a+ h))− f(g(a))

g(a+ h)− g(a)
· lim
h→0

g(a+ h)− g(a)

h

=

(
lim
h→0

f(g(a+ h))− f(g(a))

g(a+ h)− g(a)

)
· g′(a)

This is a bit of a false start as we now have two problems:

• To get f ′(g(a)) in the first term, we need limh→0
f(g(a)+h)−f(g(a))

h , but

instead we have limh→0
f(g(a+h))−f(g(a))

g(a+h)−g(a) .

• g(a+ h)− g(a) may be zero for h ̸= 0, so the division may be illegal.

However it isn’t a total waste. Our false start gives us an idea for how we may

proceed– we’ll replace f(g(a+h))−f(g(a))
g(a+h)−g(a) with something better. What could

be the replacement? Let’s hypothesize existance of a function ϕ(h) with the
following property (we will soon prove such a function exists):

f(g(a+ h))− f(g(a))

h
= ϕ(h) · g(a+ h)− g(a)

h

We can then rewrite our initial equations as follows:

(f ◦ g)′(a) = lim
h→0

(f ◦ g)(a+ h)− (f ◦ g)(a)
h

= lim
h→0

f(g(a+ h))− f(g(a))

h

= lim
h→0

(
ϕ(h) · g(a+ h)− g(a)

h

)
= lim

h→0
ϕ(h) · lim

h→0

g(a+ h)− g(a)

h

= lim
h→0

ϕ(h) · g′(a)
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To get to (f ◦g)′(a) = f ′(g(a))·g′(a) we need ϕ(h) to possess one more property:

lim
h→0

ϕ(h) = f ′(g(a))

Given this additional property, we can now finish our reasoning:

(f ◦ g)′(a) = lim
h→0

ϕ(h) · g′(a) = f ′(g(a)) · g′(a)

Thus proving the chain rule reduces to proving there exists a function ϕ(h) with
the two properties above. For cleanliness, let’s start a new proof from scratch
and demonstrate the existance of such a function.

Proof.

Suppose there exists a function ϕ(h) with the following properties:

f(g(a+ h))− f(g(a))

h
= ϕ(h) · g(a+ h)− g(a)

h
(1)

lim
h→0

ϕ(h) = f ′(g(a)) (2)

Then

(f ◦ g)′(a) = lim
h→0

(f ◦ g)(a+ h)− (f ◦ g)(a)
h

= lim
h→0

f(g(a+ h))− f(g(a))

h

= lim
h→0

(
ϕ(h) · g(a+ h)− g(a)

h

)
by property 1

= lim
h→0

ϕ(h) · lim
h→0

g(a+ h)− g(a)

h

= lim
h→0

f ′(g(a)) · g′(a) by property 2

To complete the proof we must construct such a function and prove our con-
struction has properties 1 and 2. We will do so now. Define ϕ as follows:

ϕ(h) =

{
f(g(a+h))−f(g(a))

g(a+h)−g(a) if g(a+ h)− g(a) ̸= 0

f ′(g(a)) if g(a+ h)− g(a) = 0

We will prove properties 1 and 2 hold for ϕ.

Property 1 proof.

We now show f(g(a+h))−f(g(a))
h = ϕ(h) · g(a+h)−g(a)

h . There are two cases: either
g(a+ h)− g(a) ̸= 0 or g(a+ h)− g(a) = 0. Suppose g(a+ h)− g(a) ̸= 0. Then

ϕ(h) · g(a+ h)− g(a)

h
=

f(g(a+ h))− f(g(a))

g(a+ h)− g(a)
· g(a+ h)− g(a)

h

=
f(g(a+ h))− f(g(a))

h
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Alternatively, suppose g(a+ h)− g(a) = 0. Then

ϕ(h) · g(a+ h)− g(a)

h
= f ′(g(a)) · g(a+ h)− g(a)

h

= f ′(g(a)) · 0
h

= 0

But g(a+ h)− g(a) = 0 means g(a+ h) = g(a), and thus f(g(a+h))−f(g(a))
h = 0.

Thus in both cases property 1 holds, as desired.

Property 2 proof.
We now show limh→0 ϕ(h) = f ′(g(a)). Put differently:

• Intuitively, we’re trying to show that when h is small, the top piece of ϕ
piecewise definition approaches the bottom piece (which we chose to be
f ′(g(a))).

• Here is another way to frame it. Observe that ϕ(0) = f ′(g(a)). Thus
showing limh→0 ϕ(h) = f ′(g(a)) is equivalent to showing limh→0 ϕ(h) =
ϕ(0), i.e. that ϕ is continuous at 0.

• Formally, we must show that given ϵ > 0 there exists δ > 0 such that
|h| < δ implies |ϕ(h)− f ′(g(a))| < ϵ.

So, let ϵ > 0 be given.

Firstly, since f is differentiable at g(a), by definition of the derivative we have:

f ′(g(a)) = lim
k→0

f(g(a) + k)− f(g(a))

k

Inlining the limit defition, for all ϵ > 0 there exists δ′ > 0 such that 0 < |k| < δ′

implies ∣∣∣∣f(g(a) + k)− f(g(a))

k
− f ′(g(a))

∣∣∣∣ < ϵ

Secondly, since g is differentiable at a, it continuous at a. Thus:

lim
h→0

g(a+ h) = g(a)

Or put differently, there exists δ > 0 such that |h| < δ implies:

|g(a+ h)− g(a)| < δ′

Finally, we now have everything we need to prove property 2. Consider any h
with |h| < δ.

• If g(a+ h)− g(a) = 0 then ϕ(h) = f ′(g(a)) so |ϕ(h)− f ′(g(a))| < ϵ.
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• If g(a+ h)− g(a) ̸= 0 we can fix k = g(a+ h)− g(a) as both aren’t 0 and
are less than δ′. Thus we get:

ϵ >

∣∣∣∣f(g(a) + k)− f(g(a))

g(a+ h)− g(a)
− f ′(g(a))

∣∣∣∣
=

∣∣∣∣f(g(a) + g(a+ h)− g(a))− f(g(a))

g(a+ h)− g(a)
− f ′(g(a))

∣∣∣∣
=

∣∣∣∣f(g(a+ h))− f(g(a))

g(a+ h)− g(a)
− f ′(g(a))

∣∣∣∣
= |ϕ(h)− f ′(g(a))|

I.e. |ϕ(h)− f ′(g(a))| < ϵ as desired.

—

Theorem 9a. Let fi be differentiable at fi+1(. . . fn(x) . . . ). Then:

(f1 ◦ . . . ◦ fn)′(x) =
n∏

i=1

f ′
i (fi+1(. . . fn(x) . . . ))

Proof. This is a fairly straightforward proof by induction. Skipping it here as
I’ve already spent enough time on this chapter.

9.3 Derivatives of polynomials

We can easily find derivatives of polynomials using theorems 1-6. It turns out
to be an interesting enough form that it’s worth mentioning explicitly. Consider

f(x) = anx
n + an−1x

n−1 + . . .+ a2x
2 + a1x+ a0

Then:
f ′(x) = nanx

n−1 + (n− 1)an−1x
n−2 + . . .+ 2a2x+ a1

Continuing:

f ′′(x) = n(n− 1)anx
n−2 + (n− 1)(n− 2)an−1x

n−3 + . . .+ 2a2

Repeatedly continuing this process we get:

f (n)(x) = n!an

And of course for m > n it’s easy to see f (m) = 0.
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9.4 Differentiation practice

Spivak spends a lot of the chapter covering concrete differentiation examples. I
work through these here. First, a summary of the nine differentiation theorems
proved above:

1. If f(x) = c then f ′(a) = 0.

2. If f(x) = x then f ′(a) = 1.

3. (f + g)′(a) = f ′(a) + g′(a).

4. (f · g)′(a) = f ′(a) · g(a) + f(a) · g′(a).

5. If g(x) = cf(x) then g′(a) = c · f ′(a).

6. If f(x) = xn for n ∈ N , then f ′(a) = nan−1.

7.
(

1
g

)′
(a) = −g′(a)

[g(a)]2
.

8.
(

f
g

)′
(a) = g(a)·f ′(a)−f(a)·g′(a)

[g(a)]2 .

9. (f ◦ g)′(a) = f ′(g(a)) · g′(a).

You also need to know two trig derivatives presented below without proof
(proper proofs will show up in a later chapter when sin and cos are formally
defined):

sin′(a) = cos a

cos′(a) = − sin a

We are now ready to practice example problems.

f(x) =
x2 − 1

x2 + 1
=⇒ f ′(x) =

(x2 + 1)2x− (x2 − 1)2x

(x2 + 1)2
=

4x

(x2 + 1)2

f(x) =
x

x2 + 1
=⇒ f ′(x) =

1− x2

(x2 + 1)2

f(x) =
1

x
= x−1 =⇒ f ′(x) = − 1

x2
= (−1)x−2

f(x) = x sinx =⇒ f ′(x) = sinx+ x cosx

=⇒ f ′′(x) = 2 cosx− x sinx

g(x) = sin2 x = sinx sinx =⇒ g′(x) = 2 sinx cosx

=⇒ g′′(x) = 2 cos2 x− 2 sin2 x

h(x) = cos2 x = cosx cosx =⇒ h′(x) = −2 sinx cosx

=⇒ h′′(x) = 2 sin2 x− 2 cos2 x
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Note g′(x) + h′(x) = 0. This is something we could have guessed– (g + h)(x) =
sin2 x+ cos2 x = 1, thus by theorem 1, (g + h)′(x) = 0.

f(x) = x3 sinx cosx

=⇒ f ′(x) = 3x2 sinx cosx+ x3 cos2 x− x3 sin2 x

The next set of examples uses the chain rule (where sometimes the product
rule could be used instead). For example, sin2 x could be interpreted either as
sinx sinx, or as s(sinx) where s(x) = x2.

f(x) = sinx2 =⇒ f ′(x) = cosx2 · 2x
f(x) = sin2 x =⇒ f ′(x) = 2 sinx · cosx
f(x) = sinx3 =⇒ f ′(x) = cosx3 · 3x2

f(x) = sin3 x =⇒ f ′(x) = 3 sin2 x · cosx

f(x) = sin
1

x
=⇒ f ′(x) = cos

1

x
· −1

x2

f(x) = sin(sinx) =⇒ f ′(x) = cos(sinx) · cosx
f(x) = sin(x3 + 3x2) =⇒ f ′(x) = cos(x3 + 3x2) · (3x2 + 6x)

f(x) = (x3 + 3x2)53 =⇒ f ′(x) = 53(x3 + 3x2)52 · (3x2 + 6x)

We now consider a composition of three functions:

f(x) = sin2 x2 = s ◦ (sin ◦s) =⇒ f ′(x) = 2 sinx2 · cosx2 · 2x
f(x) = sin(sinx2) = sin ◦(sin ◦s) =⇒ f ′(x) = cos(sinx2) · cosx2 · 2x

And finally a composition of four functions:

f(x) = sin2(sin2 x) = s ◦ (sin ◦(s ◦ sin))
=⇒ f ′(x) = 2 sin(sin2 x) · cos(sin2 x) · 2 sinx · cosx

f(x) = sin((sinx2)2) = sin ◦s ◦ sin ◦s
=⇒ f ′(x) = cos((sinx2)2) · 2 sinx2 · cosx2 · 2x

f(x) = sin2(sin(sinx)) = s ◦ sin ◦ sin ◦ sin
=⇒ f ′(x) = 2 sin(sin(sinx)) · cos(sin(sinx)) · cos(sinx) · cosx

9.5 Sine polynomials

I don’t think “sine polynomials” is a real name, but I needed a clever name for
this section. Here we explore derivatives of functions of the form xk sin 1

x .

Claim 1: Let

f(x) =

{
x sin 1

x , x ̸= 0

0, x = 0
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Then f is not differentiable at 0.

Proof. Using derivative definition:

lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

h sin 1
h − 0

h
= lim

h→0
sin

1

h

We saw in 8.3 that limh→0 sin
1
h does not exist. Thus f is not differentiable at

zero.

—

Claim 2: Let

f(x) =

{
x2 sin 1

x , x ̸= 0

0, x = 0

Then f is differentiable at 0.

Proof. Using derivative definition:

lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

h2 sin 1
h − 0

h
= lim

h→0
h sin

1

h
= 0

Thus f ′(0) = 0.

—

Claim 3: Let

f(x) =

{
x2 sin 1

x , x ̸= 0

0, x = 0

Then f ′ is not differentiable at 0.

Proof. Observe that:

f ′(x) =

{
2x sin 1

x − cos 1
x , x ̸= 0

0, x = 0

Observe that limx→0 cos
1
x does not exist (for the same reason limx→0 sin

1
x does

not exist). Thus limx→0 f
′(x) does not exist. And thus f ′ is not continuous, let

alone differentiable at 0.
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10 Derivatives, Part IIb (Leibniz notation)

The notation f ′ that we’ve used so far is called the Lagrange notation.13 How-
ever, there is another notation for the derivative in common use. You may have
already seen something like dy

dx . This is called the Leibniz notation.

The Leibniz notation has many of what Spivak calls “vagaries”. It has multiple
interpretations– formal and informal. The informal interpretation doesn’t map
to modern mathematics, but can sometimes be useful (while at other times mis-
leading). The full, unambigous Leibniz notation, at least as Spivak defines it, is
verbose, so in practice people end up taking liberties with it. As a consequence,
its meaning must often be discerned from the context.

This flexibility makes the notation very useful in science and engineering, but
also makes it difficult to learn. Spivak chose to standardize on the Lagrange
notation to maximize clarity, and banished Leibniz notation to problem sections.
But since the Leibniz notation is so common, I take a different approach and
explore it here in a dedicated chapter.

10.1 Historical motivation

We start with the historical interpretation, where the notation began. Leibniz
didn’t know about limits. He thought the derivative is the value of the quotient

f(x+ h)− f(x)

h

when h is “infinitesimally small”. He denoted this infinitesimally small quantity
of h by dx, and the corresponding difference f(x + dx) − f(x) by df(x). Thus
for a given function f the Leibniz notation for its derivative f ′ is:

df(x)

dx
= f ′

Intuitively, we can think of d in a historical context as “delta” or “change”.
Then we can interpret this notation as Leibniz did– a quotient of a tiny change
in f(x) and a tiny change in x. But this explanation comes with two important
disclaimers.

First, d is not a value. If it were a value, you could cancel out d’s in the numer-
ator and the denomenator. But you can’t. Instead think of d as an operator.
When applied to f(x) or x, it produces an infinitesimally small quantity. Alter-
natively you can think of df(x) and dx as one symbol that happens to look like
multiplication, but isn’t.14

13Wikipedia claims the notation was invented by Euler and Lagrange only popularized it.
14I read somewhere that in his notebooks Leibniz experimented with extending d with a

squiggle on top that went over x to indicate that d is not a value, but I haven’t been able to
verify if that’s true.
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Second, note that df(x)
dx denotes a function equivalent to f ′, not a value equivalent

to f ′(x). To denote the image of the derivative function at a we use the following
notation:

df(x)

dx

∣∣∣∣
x=a

= lim
h→0

f(a+ h)− f(a)

h
= f ′(a)

10.2 Modern interpretation

To summarize, the full and unambiguous Leibniz notation in modern in-
terpretation is:

df(x)

dx
= f ′ and

df(x)

dx

∣∣∣∣
x=a

= f ′(a)

Real numbers do not have a notion of infinitesimally small quantities. Thus in a

modern interpretation we treat df(x)
dx as a symbol denoting f ′, not as a quotient

of numbers. Nothing here is being divided, nothing can be canceled out. In a

modern interpretation df(x)
dx is just one thing that happens to look like a quotient

but isn’t, anymore than f ′ is a quotient.

10.3 Second derivative

A question arises for how to express the second (or nth) derivative in the Leibniz

notation. Let g(x) = df(x)
dx (i.e. let g be the first derivative of f). Then it follows

that the second derivative in Leibniz notation is dg(x)
dx = g′ = f ′′. Substituting

the definition of g we get:

d
(

df(x)
dx

)
dx

= f ′′

Of course this is too verbose and no one wants to write it this way. This is
where the vagaries begin. For convenience people use the usual algebraic rules
to get a simpler notation, eventhough formally everything is one symbol and
you can’t actually do algebra on it:

d
(

df(x)
dx

)
dx

=
d2f(x)

dx2

Two questions arise here.

First, why dx2? Shouldn’t it be (dx)2? One way to answer this question is
to remember that dx is one symbol, not a multiplication (because d is not a
value). And so we’re just squaring that one symbol dx, which doesn’t require
parentheses.

Another probably more honest way to answer this question is to recall that this
isn’t real algebra– we just use a simularcum of algebra out of convenience. But
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convenience is a morally flexible thing, and people decided to drop parentheses
because they’re a pain to write. So (dx)2 became dx2.

Second, we said before that df(x) can be thought of as one symbol. Then what
is this d2 business? The answer here is the same– we aren’t doing real algebra,
but a simularcum of algebra out of convenience. We aren’t really squaring
anything; we’re overloading exponentiation to mean “second derivative”. The
symbol d2f(x) is again one symbol.

10.4 Liberties and ambiguities

There are a few more liberties people take with the Leibniz notation. Let
f(x) = x2. If we want to denote the derivative of f we can do it in two ways:

df(x)

dx
or

dx2

dx

Here dx2

dx is new, but the meaning should be clear. We’re just replacing f(x)
in df(x) with the definition of f(x). This is a little confusing because in the
particular case of f(x) = x2, it’s visually similar to the notation for second
derivative. There are no ambiguities here so far– it’s just a visual artifact of the
notation we have to learn to ignore. But now the liberties come.

Suppose we wanted to state what the derivative of f is. In Lagrange notation
we say f ′(a) = 2a. In Leibniz notation the proper way to say it would be as
follows:

df(x)

dx

∣∣∣∣
x=a

= 2a

But this is obviously a pain, so people end up taking two liberties. First,
everyone drops the vertical line that denotes the application at a. So in practice
the form above becomes:

df(x)

dx
= 2x

This shouldn’t “compile” because df(x)
dx = f ′. Thus this statement is equivalent

to saying f ′ = 2x, which doesn’t make sense. But this is the notation most
people use, and you have to get used to it.

Second, people decided that writing df(x)
dx is too painful, and in practice everyone

writes df
dx . This also shouldn’t compile (it would be something like writing

limx→a f , which also doesn’t make sense). But again, it’s the notation most
people use.

To summarize what we have so far:

df(x)

dx

∣∣∣∣
x=a

= 2a becomes
df

dx
= 2x
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10.5 Chain rule

How do we express the chain rule (f◦g)′(x) = f ′(g(x))·g′(x) in Leibniz notation?
In the full and unambiguous version the chain rule ought to look like this:

df(g(x))

dx
=

df(y)

dy

∣∣∣∣
y=g(x)

· dg(x)
dx

But, surprise, nobody does it this way. Usually people say that if y = g(x) and
z = f(y) then:

dz

dx
=

dz

dy
· dy
dx

Let’s go through some examples of using this formula, and then see what’s going
on here. Let z = sin y, y = cosx. Then

dz

dx
=

dz

dy
· dy
dx

= cos y · (− sinx)

= − cos(cosx) · sinx

How about z = sinu, u = x+ x2? Well,

dz

dx
=

dz

du
· du
dx

= cosu · (2x+ 1)

= cos(x+ x2) · (2x+ 1)

How about a more complicated chain z = sin v, v = cosu, u = sinx?

dz

dx
=

dz

dv
· dv
dx

=
dz

dv
· dv
du

· du
dx

= cos v · (− sinu) · cosx
= − cos(cos(sinx) · sin(sinx) · cosx

Now, there are a bunch of notational liberties here:

• y = . . . implicitly defines a function y(x) which is then used in e.g. dy
dx .

But y can also be referenced as a value (e.g. “plot y when x is . . .”). So
the deliniation between functions and the values they take on is blurred.

• dz on the left side of the equations (e.g. in dz
dx ) denotes f ◦ g. But dz on

the right side of the equations (e.g. in dz
dy ) denotes f . In other words, the

denomenator has a bearing on the meaning of the numerator.
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• dz
dy denotes the derivative function, but is also understood to be “an ex-
pression involing y” that must be substituted with the value of y in the
final answer. E.g. in the first example dz

dy is equal to cos y, and we must
then substitute y with cosx.

Despite all these quirks and ambiguities, with some practice we begin to see
how easy and useful the Leibniz notation is. In the next section we will refine
this understanding as we deal with physical problems involving the derivative.

10.6 Implicit differentiation

Suppose we have an equation for a unit circle x2+y2 = 1, and we want to know
y changes with changes in x. We will solve this problem in two ways. First,
using a “brute force” approach by explicitly solving for y and then differentiat-
ing. Second, using a technique called implicit differentiation that considerably
simplifies the problem.

Brute force approach

With the brute force approach we solve for y and differentiate. Observe that
y2 = 1 − x2, and thus there are two solutions (one for half-circle above the
x-axis, and one for half-circle below):

y =
√
1− x2 and y = −

√
1− x2

Differentiating, we get:

y′ = − x√
1− x2

= −x

y
and y′ = − x

−
√
1− x2

= −x

y

Thus y′ = −x
y when y ̸= 0.

Implicit differentiation approach

We now take a different approach and find a solution without explicitly solving
for x. We want to find dy

dx . The first thing we’ll do is take a derivative of each
side of the equations:

x2 + y2 = 1

=⇒ d

dx
(x2 + y2) =

d

dx
1

=⇒ d

dx
x2 +

d

dx
y2 = 0

Now dx2

dx = 2x by a straightforward application of differentiation theorem 6.

But what about dy2

dx ? This would tell us how y2 changes with changes in x (not
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with changes in y), but how to determine that is not obvious. And so we use
the chain rule:15

2x+
dy2

dy
· dy
dx

= 0

=⇒ 2x+ 2y · dy
dx

= 0

=⇒ dy

dx
=

−2x

2y
= −x

y

15This is very handwavy and I’m running out of steam. Spivak discusses implicit differen-
tiation in his chapter on inverse functions, so I expect to come back to this topic later.
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11 Derivatives, Part III (Consequences)

I reordered some content from Spivak’s chapter for clarity, but kept theorem
and corollary numbering scheme. Thus theorem numbers here aren’t in order
(but they match the numbers in Spivak).

11.1 Maxima and manima

We start with some definitions. Let f be a function and A a set of numbers
contained in f ’s domain.16 Then:

Definition. A point x in A is a maximum point for f on A if

f(x) ≥ f(y) for every y in A

Definition. A critical point of f is a number x such that f ′(x) = 0.17

—

Theorem 1a. Let f be any function defined on (a, b). If x is a maximum point
for f on (a, b), and f is differentiable at x, then f ′(x) = 0.

Intuitively, maximum and minimum points are also critical points (but not the
other way around– f(x) = x3 has f ′(0) = 0 as an obvious counterexample18).

Proof. Informally, suppose a is a maximum point. Draw a secant line between
a and al (to its left), and another line between a and ar (to its right). The a−al
line will slope up, the a − ar line will slope down. Thus at a the slope crosses
from positive to negative, and is 0.

Formally, let h ∈ R such that x+ h ∈ (a, b). If h < 0 it follows that:

f(x+ h) ≤ f(x) since f(x) is a maximum value

=⇒ f(x+ h)− f(x) ≤ 0

=⇒ f(x+ h)− f(x)

h
≥ 0 dividing by negative h

=⇒ lim
h→0−

f(x+ h)− f(x)

h
≥ 0 see 3.2 and 4.1

Conversely, if h > 0 it follows that:

=⇒ f(x+ h)− f(x)

h
≤ 0 dividing by positive h

=⇒ lim
h→0+

f(x+ h)− f(x)

h
≤ 0

16A need not have any additional properties. E.g. it may have holes, etc.
17If x is a maximum and/or critical point, then f(x) is called a maximum and/or critical

value of f .
18In this case this critical point is called the saddle point.

64



By hypothesis, f is differentiable at x. Thus the two limits must be equal to
each other, and to f ′(x). Therefore f ′(x) ≥ 0 and f ′(x) ≤ 0. Thus f ′(x) = 0 as
desired.

Theorem 1b. Let f be any function defined on (a, b). If x is a minimum point
for f on (a, b), and f is differentiable at x, then f ′(x) = 0.

Proof. Let g = −f . Then x is a maximum point of g. By 1a, g′(x) = 0, thus
(−f)′(x) = −1 · f ′(x) = 0, and thus f ′(x) = 0 as desired.

—

The obvious (extremely valuable) consequences of these theorems is that we can
find minimum and maximum values of f by solving for f ′(x) = 0.

11.2 Mean Value Theorem

Theorem 3 (Rolle’s theorem). Let f be continuous on [a, b] differentiable
on (a, b), and let f(a) = f(b). Then there exists x ∈ (a, b) such that f ′(x) = 0.

Proof. There are two cases:

• Case 1. Suppose the maximum or the minimum occurs at a point x ∈
(a, b). Then f ′(x) = 0 by theorem 1, and we are done.

• Case 2. Suppose the maximum and the minimum both occur at endpoints.
Since f(a) = f(b), the maximum and the minimum values are equal and
f is constant. Then for any x ∈ (a, b), f ′(x) = 0 and we are done.

Theorem 4 (Mean value theorem).
Let f be continuous on [a, b] and differentiable on (a, b). Then there exists
x ∈ (a, b) such that:

f ′(x) =
f(b)− f(a)

b− a

Here are three intuitions:

1. Geometric intuition. There exists a line tangent to f parallel to the line
between the endpoints (i.e. line between (a, f(a)) and (b, f(b))).

2. Algebraic intuition. There exists a point x at which instantaneous rate of
change of f is equal to the average change of f on [a, b].

3. Physical example. If you travel 60 miles in one hour, at some point you
must have been travelling exactly 60 miles per hour.

Proof.
Here’s an informal proof outline:

• Take the line segment formed by endpoints (a, f(a)) and (b, f(b)).
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• Construct a function g that for x ∈ (a, b) returns the vertical distance
between f(x) and the line segment. (We’ll show it’s continuous and dif-
ferentiable.)19

• By Rolle’s theorem, it has a flat tangent. It’s easy to show algebraically
(and visualize geometrically) this proves the MVT.

Formally, let20

h(x) = f(x)−
[
f(b)− f(a)

b− a
(x− a)

]
Observe h is continuous on [a, b] and differentiable on (a, b). Further:

h(a) = f(a)−
[
f(b)− f(a)

b− a
· 0
]
= f(a)

h(b) = f(b)−
[
f(b)− f(a)

b− a
(b− a)

]
= f(b)− [f(b)− f(a)]

= f(a)

Thus we can apply Rolle’s Theorem h to conclude there is x ∈ (a, b) such that:21

0 = h′(x) = f ′(x)− f(b)− f(a)

b− a

=⇒ f ′(x) =
f(b)− f(a)

b− a

QED.

11.3 MVT consequences

Corollary 1. If f is defined on an interval and f ′(x) = 0 for all x in the
interval, then f is constant on the interval.

Intuitively, if the velocity of a particle is always zero, the particle must be
standing still.

Proof. Let a ̸= b be any two points on the interval. Then there is x ∈ (a, b)

such that f ′(x) = f(b)−f(a)
b−a . But f ′(x) = 0 for all x on the interval, thus

0 = f(b)−f(a)
b−a . Thuf f(a) = f(b) for any a, b (i.e. f is constant on the interval

as desired).

19It turns out not to matter whether g computes the distance between f and the line
segment, or f and the line segment shifted down by f(a) (i.e. down to x-axis). So in practice
we use the lattern form to avoid dealing with the f(a) term in the linear equation.

20See 7.5 for how the point-slope form is used to construct the second term.
21Note the derivative of a line is its slope, thus d

dx

[
f(b)−f(a)

b−a
(x− a)

]
=

f(b)−f(a)
b−a

.
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—

Corollary 2. If f, g are defined on the same interval, and f ′(x) = g′(x) for all
x in the interval, then there is c ∈ R such that f = g + c.

Proof. Observe that

f ′(x) = g′(x)

=⇒ f ′(x)− g′(x) = 0

(f − g)′(x) = 0

By corollary 1, (f − g) is constant, i.e. f = g + c as desired.

—

Definition. A function is increasing on an interval if f(a) < f(b) whenever
a, b are two numbers in the interval with a < b.22

Corollary 3a. If f ′(x) > 0 for all x on an interval, then f is increasing on the
interval.

Proof. Let a < b be two points on an interval. Then there exists x ∈ (a, b)
such that

f ′(x) =
f(b)− f(a)

b− a

But f ′(x) > 0 for all x ∈ (a, b), thus

f(b)− f(a)

b− a
> 0

We know b− a > 0, thus f(b) > f(a) as desired.

—

Corollary 3b. If f ′(x) < 0 for all x on an interval, then f is decreasing on the
interval.

Proof. The proof is an obvious modification of 3a.

11.4 Local maxima and manima

Definition. A point x in A is a local maximum point for f on A if there is
some δ > 0 such that x is a maximum point for f on A ∩ (x− δ, x+ δ).

Theorem 2. If f is defined on (a, b) and has a local maximum (or minimum)
at x, and f is differentiable at x, then f ′(x) = 0.

Proof. The proof is a trivial application of theorem 1 to f on (x− δ, x+ δ).

22The decreasing function definition is obvious.
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11.5 Graph sketching

11.6 L’Hôpital’s rule

We will build up to L’Hôpital’s rule in the following way:

1. First, we’ll cover a special case of L’Hôpital’s rule (theorem 7, no holes in
derivatives).

2. To prove the L’Hôpital’s rule we’ll need Cauchy’s Mean Value Theorem
(a generalization of the Mean Value Theorem). When stated outright it
can be hard to parse, so we’ll build up to it informally next.

3. Formally prove Cauchy’s Mean Value Theorem.

4. Prove L’Hôpital’s rule.

5. We then reprove theorem 7 in a simpler way using L’Hôpital’s rule.

—

Theorem 7. Suppose (1) f is continuous at a, (2) f ′(x) exists for all x in
0 < |x− a| < δ, and (3) limx→a f

′(x) exists. Then f ′(a) exists and

f ′(a) = lim
x→a

f ′(x)

Intuitively, derivatives cannot have holes. Put differently, f ′ can be discontinu-
ous at a by fluctuating wildly near a23, but not by being undefined at a, or by
being defined at a to be far from its limit near a.

Proof 1.24 Informally, for “nice” functions like f , the mean value theorem
applies on tiny scales of δ − ϵ limits.

By derivative definition

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

For sufficiently small h, both positive and negative, by supposition:

• f will be continuous on [a, a+ h]

• f will be differentiable on (a, a+ h)

23In 9.5 we’ve already seen an example of this:

f(x) =

{
x2 sin 1

x
, x ̸= 0

0, x = 0.

24We will give a second proof in terms of L’Hôpital’s rule at the end of this chapter.
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These conditions are sufficient for the mean value theorem, and thus there exists
αh ∈ (a, a+ h) such that:

f(a+ h)− f(a)

h
= f ′(αh)

Putting this together:25

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
by derivative definition

= lim
h→0

f ′(αh) by mean value theorem

= lim
x→a

f ′(x) αh ∈ (a, a+ h), thus as h → 0, αh → a

—

Theorem 8 (Cauchy’s MVT), handwavy version.

Let f, g be continuous on [a, b] and differentiable on (a, b). Intuitively, theorem

8 states that there exists a point x ∈ (a, b) where f ′(x)
g′(x) (i.e. the ratio of instan-

taneous changes of f and g) is the same as the ratio of average changes of f
and g on [a, b].

A more formal version of this is:

f ′(x)

g′(x)
=

f(b)− f(a)

b− a
÷ g(b)− g(a)

b− a

=
f(b)− f(a)

b− a
· b− a

g(b)− g(a)

=
f(b)− f(a)

g(b)− g(a)

when g′(x) ̸= 0 and g(b)− g(a) ̸= 0.

There are two additional considerations. First, if g(x) = x then g′(x) = 1,

and the theorem simplifies to f ′(x) = f(b)−f(a)
b−a (i.e. we obtain the mean value

theorem).

Second, to avoid division by zero constraints, formally the Cauchy theorem is
expressed as a multiplication rather than division of terms:

f ′(x)

g′(x)
=

f(b)− f(a)

g(b)− g(a)

=⇒ [f(b)− f(a)]g′(x) = [g(b)− g(a)]f ′(x)

25Spivak observes the last equation in the proof is handwavy and needs a proper δ−ϵ proof.
I need to move on, so leaving this as a TODO.
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With this buildup, we’re ready to prove Cauchy’s MVT.

Theorem 8 (Cauchy’s MVT). Let f, g be continuous on [a, b] and differen-
tiable on (a, b). Then there exists x ∈ (a, b) such that

[f(b)− f(a)]g′(x) = [g(b)− g(a)]f ′(x)

Proof. Let
h(x) = f(x)[g(b)− g(a)]− g(x)[f(b)− f(a)]

Then h is continuous on [a, b] and differentiable on (a, b). Further observe that26

h(a) = f(a)g(b)− f(b)g(a) = h(b)

Thus h(a) = h(b), Rolle’s theorem applies, and there exists x ∈ (a, b) such that
h′(x) = 0. Taking the derivative of h27:

0 = h′(x) = f(x)′[g(b)− g(a)]− g(x)′[f(b)− f(a)]

—

Theorem 9 (L’Hôpital’s rule.) Suppose that (1) limx→a f(x) = 0 and

limx→a g(x) = 0, and (2) limx→a
f ′(x)
g′(x) exists. Then limx→a

f(x)
g(x) exists, and

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

Proof.

—

Theorem 7, proof 2. We can now offer a second proof for Theorem 7, as it
turns out to be a special case of L’Hôpital’s rule.

Recall, the theorem asserts the following. Suppose (1) f is continuous at a, (2)
f ′(x) exists for all x in 0 < |x− a| < δ, and (3) limx→a f

′(x) exists. Then f ′(a)
exists and

f ′(a) = lim
x→a

f ′(x)

By derivative definition:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

Let x = a+ h. We can rewrite the equation above as follows:

f ′(a) = lim
x→a

f(x)− f(a)

x− a

26If you plug a and b into h(x), I promise this works (I checked).
27Note to derive h′ we treat g(b)− g(a) and f(b)− f(a) as constants.
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Clearly limx→a[f(x) − f(a)] = 0 and limx→a[x − a] = 0. Thus by L’Hôpital’s
rule:

f ′(a) = lim
x→a

f ′(x)

1
= lim

x→a
f ′(x),

as desired.
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